Heritability of haemodynamics in the ascending aorta


  • 1.

    Liu, Z. Q., Liu, Y., Liu, T. T. & Yang, Q. S. Fluid-structure interaction analysis of pulsatile flow within a layered and stenotic aorta. Mol. Cell. Biomech. 11, 129–149 (2014).

    PubMed 

    Google Scholar
     

  • 2.

    Chen, B. P. et al. DNA microarray analysis of gene expression in endothelial cells in response to 24-h shear stress. Physiol. Genom. 7, 55–63 (2001).

    CAS 

    Google Scholar
     

  • 3.

    Prado, C. M., Ramos, S. G., Elias, J. & Rossi, M. A. Turbulent blood flow plays an essential localizing role in the development of atherosclerotic lesions in experimentally induced hypercholesterolaemia in rats. Int. J. Exp. Pathol. 89, 72–80 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Lotz, J., Meier, C., Leppert, A. & Galanski, M. Cardiovascular flow measurement with phase-contrast MR imaging: basic facts and implementation. Radiographics 22, 651–671 (2002).

    PubMed 

    Google Scholar
     

  • 5.

    Klein, W. M., Bartels, L. W., Bax, L., van der Graaf, Y. & Willem, P. T. M. Magnetic resonance imaging measurement of blood volume flow in peripheral arteries in healthy subjects. J. Vasc. Surg. 38, 1060–1066 (2003).

    PubMed 

    Google Scholar
     

  • 6.

    Morris, P. D. et al. Computational fluid dynamics modelling in cardiovascular medicine. Heart 102, 18–28 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Owen, B. et al. Computational hemodynamics of abdominal aortic aneurysms: three-dimensional ultrasound versus computed tomography. Proc. Inst. Mech. Eng. H 230, 201–210 (2016).

    PubMed 

    Google Scholar
     

  • 8.

    Ruiz-Soler, A., Kabinejadian, F., Slevin, M. A., Bartolo, P. J. & Keshmiri, A. Optimisation of a novel spiral-inducing bypass graft using computational fluid dynamics. Sci. Rep. 7, 1–14 (2017).

    CAS 

    Google Scholar
     

  • 9.

    Stalder, A. F. et al. Assessment of flow instabilities in the healthy aorta using flow-sensitive MRI. J. Magn. Reson. Imaging 33, 839–846 (2011).

    PubMed 

    Google Scholar
     

  • 10.

    Dyverfeldt, P., Sigfridsson, A., Kvitting, J. P. E. & Ebbers, T. Quantification of intravoxel velocity standard deviation and turbulence intensity by generalizing phase-contrast MRI. Magn. Reson. Med. 56, 850–858 (2006).

    PubMed 

    Google Scholar
     

  • 11.

    Walheim, J., Dillinger, H. & Kozerke, S. Multipoint 5D flow cardiovascular magnetic resonance—accelerated cardiac—and respiratory-motion resolved mapping of mean and turbulent velocities. J. Cardiovasc. Magn. Reson. 21, 1–13 (2019).


    Google Scholar
     

  • 12.

    Brant, W. The Core Curriculum: Ultrasound (Lippincott, Williams and Wilkins, Philadelphia, 2001).


    Google Scholar
     

  • 13.

    De Simone, G. et al. Relation of blood viscosity to demographic and physiologic variables and to cardiovascular risk factors in apparently normal adults. Circulation 81, 107–117 (1990).

    PubMed 

    Google Scholar
     

  • 14.

    Reynolds, O. On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philos. Trans. R. Soc. A 186, 123–164 (1895).

    ADS 
    MATH 

    Google Scholar
     

  • 15.

    Antiga, L. & Steinman, D. A. Rethinking turbulence in blood. Biorheology 46, 77–81 (2009).

    PubMed 

    Google Scholar
     

  • 16.

    Markl, M., Kilner, P. & Ebbers, T. Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 13, 1–22 (2011).


    Google Scholar
     

  • 17.

    von Spiczak, J. et al. Quantitative analysis of vortical blood flow in the thoracic aorta using 4D phase contrast MRI. PLoS ONE 10, e0139025 (2015).


    Google Scholar
     

  • 18.

    Ni, C. W. et al. Discovery of novel mechanosensitive genes in vivo using mouse carotid artery endothelium exposed to disturbed flow. Blood 116, 66–74 (2010).


    Google Scholar
     

  • 19.

    Garcia-Cardena, G., Comander, J., Anderson, K. R., Blackman, B. R. & Gimbrone, M. A. Biomechanical activation of vascular endothelium as a determinant of its functional phenotype. Proc. Natl. Acad. Sci. U. S. A. 98, 4478–4485 (2001).

    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 20.

    Tarbell, J. M., Zhong-Dong, S., Dunn, J. & Hanjoong, J. Fluid mechanics, arterial disease, and gene expression. Annu. Rev. Fluid Mech. Jan 2014, 591–614 (2014).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • 21.

    Stein, P. D. & Sabbah, H. N. Turbulent blood flow in the ascending aorta of humans with normal and diseased aortic valves. Circ. Res. 39, 58–65 (1976).

    PubMed 
    CAS 

    Google Scholar
     

  • 22.

    Moreno, C. & Bhaganagar, K. Modeling of stenotic coronary artery and implications of plaque morphology on blood flow. Model. Simul. Eng. 2013, 1–14 (2013).


    Google Scholar
     

  • 23.

    Peiffer, V., Sherwin, S. J. & Weinberg, P. D. Does low and oscillatory wall shear stress correlate spatially with early atherosclerosis? A systematic review. Cardiovasc. Res. 99, 242–250 (2013).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 24.

    Keavney, B. et al. Genetic variation at the locus encompassing 11-beta hydroxylase and aldosterone synthase accounts for heritability in cortisol precursor (11-deoxycortisol) urinary metabolite excretion. J. Clin. Endocrinol. Metab. 90, 1072–1077 (2005).

    PubMed 
    CAS 

    Google Scholar
     

  • 25.

    Mayosi, B. M. et al. Electrocardiographic measures of left ventricular hypertrophy show greater heritability than echocardiographic left ventricular mass: A family study. Eur. Heart J. 23, 1963–1971 (2002).

    PubMed 
    CAS 

    Google Scholar
     

  • 26.

    Ozturk, C., Derbyshire, J. A. & Mcveigh, E. R. Estimating motion from MRI data. Proc. IEEE 91, 1627–1647 (2003).


    Google Scholar
     

  • 27.

    Tseng, W. Y. I., Su, M. Y. M. & Tseng, Y. H. E. Introduction to cardiovascular magnetic resonance: technical principles and clinical applications. Acta Cardiol. Sin. 32, 129–144 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 29.

    Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    ADS 
    PubMed 

    Google Scholar
     

  • 30.

    Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287 (2016).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 31.

    Loh, P. R. et al. Reference-based phasing using the haplotype reference consortium panel. Nat. Genet. 48, 1443–1448 (2016).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 32.

    McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48, 1279–1283 (2016).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 33.

    Abecasis, G., Cardon, L. & Cookson, W. A general test of association for quantitative traits in nuclear families. Am. J. Hum. Genet. 66, 279–292 (2000).

    PubMed 
    CAS 

    Google Scholar
     

  • 34.

    Yang, J. et al. Common SNPs explain a large proportion of heritability for human height. Nat. Genet. 42, 565–569 (2010).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 35.

    Visscher, P. M., Hill, W. G. & Wray, N. R. Heritability in the genomics era—concepts and misconceptions. Nat. Rev. Gen. 9, 255–266 (2008).

    CAS 

    Google Scholar
     

  • 36.

    Tenesa, A. & Haley, C. S. The heritability of human disease: estimation, uses and abuses. Nat. Rev. Gen. 14, 139–149 (2013).

    CAS 

    Google Scholar
     

  • 37.

    Gardin, J. M., Burn, C. S., Childs, W. J. & Henry, W. L. Evaluation of blood flow velocity in the ascending aorta and main pulmonary artery of normal subjects by Doppler echocardiography. Am. Heart J. 107, 310–319 (1984).

    PubMed 
    CAS 

    Google Scholar
     

  • 38.

    Martin, L. J., Hinton, R. B., Zhang, X., Cripe, L. H. & Benson, D. W. Aorta measurements are heritable and influenced by bicuspid aortic valve. Front. Genet. 2, 1–9 (2011).


    Google Scholar
     

  • 39.

    Bello, N. A. et al. Association of weight and body composition on cardiac structure and function in the atherosclerosis risk in communities (ARIC) study. Circ. Heart Fail. 9, 1–16 (2016).

    CAS 

    Google Scholar
     

  • 40.

    Foppa, M. et al. Right ventricular structure and function right ventricular volumes and systolic function by cardiac magnetic resonance and the impact of sex, age, and obesity in a longitudinally followed cohort free of pulmonary and cardiovascular disease. Circ. Cardiovasc. Imaging 9, 1–8 (2016).


    Google Scholar
     

  • 41.

    Davis, A. E. et al. Observational study of regional aortic size referenced to body size: production of a cardiovascular magnetic resonance nomogram. J. Cardiovasc. Magn. Reson. 16, 1–9 (2014).

    MathSciNet 

    Google Scholar
     

  • 42.

    Burman, E. D., Keegan, J. & Kilner, P. J. Aortic root measurement by cardiovascular specification of planes and lines of measurement and corresponding normal values. Circ. Cardiovasc. Imaginghttps://doi.org/10.1161/CIRCIMAGING.108.768911 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • 43.

    Owen, B., Bojdo, N., Jivkov, A., Keavney, B. & Revell, A. Structural modelling of the cardiovascular system. Biomech. Model. Mech. 17, 1–26 (2018).


    Google Scholar
     

  • 44.

    Joergensen, T. M. et al. High heritability of liability to abdominal aortic aneurysms: a population based twin study. Eur. J. Vasc. Endovasc. Surg. 52, 41–46 (2016).

    PubMed 
    CAS 

    Google Scholar
     

  • 45.

    Braverman, A. C. Heritable thoracic aortic aneurysm disease. J. Am. Coll. Cardiol. 65, 1337–1339 (2015).

    PubMed 

    Google Scholar
     

  • 46.

    Robertson, E. N., Hambly, B. D. & Jeremy, R. W. Thoracic aortic dissection and heritability: forensic implications. Forensic Sci. Med. Pathol. 12, 366–368 (2016).

    PubMed 

    Google Scholar
     

  • 47.

    Korja, M. et al. Genetic epidemiology of spontaneous subarachnoid hemorrhage: Nordic twin study. Stroke 41, 2458–2462 (2010).

    PubMed 

    Google Scholar
     

  • 48.

    Devan, W. J. et al. Heritability estimates identify a substantial genetic contribution to risk and outcome of intracerebral hemorrhage. Stroke 44, 1578–1583 (2013).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 49.

    Ikram, M. A. et al. Heritability and genome-wide associations studies of cerebral blood flow in the general population. J. Cereb. Blood Flow Metab. 38, 1598–1608 (2018).

    PubMed 

    Google Scholar
     

  • 50.

    Petersen, S. E. et al. Reference ranges for cardiac structure and function using cardiovascular magnetic resonance (CMR) in Caucasians from the UK Biobank population cohort. J. Cardiovasc. Magn. Reson. 19, 1–19 (2017).


    Google Scholar
     

  • 51.

    Kousera, C. A. et al. A numerical study of aortic flow stability and comparison with in vivo flow measurements. J. Biomech. Eng. 135, 011003 (2013).

    PubMed 
    CAS 

    Google Scholar
     

  • 52.

    Dyverfeldt, P. et al. 4D flow cardiovascular magnetic resonance consensus statement. J. Cardiovasc. Magn. Reson. 17, 1–19 (2015).


    Google Scholar
     

  • 53.

    Biglino, G. et al. Using 4D cardiovascular magnetic resonance imaging to validate computational fluid dynamics: a case study. Front. Pediatr. 3, 1–10 (2015).


    Google Scholar
     

  • 54.

    Guo, B. et al. Hemodynamic evaluation using four-dimensional flow magnetic resonance imaging for a patient with multichanneled aortic dissection. J. Vasc. Surg. Cases Innov. Tech. 4, 67–71 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Bissell, M. M. et al. Aortic dilation in bicuspid aortic valve disease: flow pattern is a major contributor and differs with valve fusion type. Circ. Cardiovasc. Imaging 6, 499–507 (2013).

    PubMed 

    Google Scholar
     

  • 56.

    Rodríguez-Palomares, J. F. et al. Aortic flow patterns and wall shear stress maps by 4D-flow cardiovascular magnetic resonance in the assessment of aortic dilatation in bicuspid aortic valve disease. J. Cardiovasc. Magn. Reson. 20, 28 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Bissell, M. M. et al. Inherited aortopathy assessment in relatives of patients with a bicuspid aortic valve. J. Am. Coll. Cardiol. 69, 904–906 (2017).

    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *