Heritability of overlapping impulsivity and compulsivity dimensional phenotypes


  • 1.

    Krueger, R. F. et al. Progress in achieving quantitative classification of psychopathology. World Psychiatry 17, 282–293. https://doi.org/10.1002/wps.20566 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Cuthbert, B. N. The RDoC framework: facilitating transition from ICD/DSM to dimensional approaches that integrate neuroscience and psychopathology. World Psychiatry 13, 28–35. https://doi.org/10.1002/wps.20087 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Hägele, C. et al. Dimensional psychiatry: reward dysfunction and depressive mood across psychiatric disorders. Psychopharmacology 232, 331–341. https://doi.org/10.1007/s00213-014-3662-7 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • 4.

    Kotov, R. et al. The hierarchical taxonomy of psychopathology (HiTOP): a dimensional alternative to traditional nosologies. J. Abnorm. Psychol. 126, 454–477. https://doi.org/10.1037/abn0000258 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • 5.

    Plomin, R., Haworth, C. M. & Davis, O. S. Common disorders are quantitative traits. Nat. Rev. Genet. 10, 872–878. https://doi.org/10.1038/nrg2670 (2009).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • 6.

    Sullivan, P. F. et al. Psychiatric genomics: an update and an agenda. Am. J. Psychiatry 175, 15–27. https://doi.org/10.1176/appi.ajp.2017.17030283 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • 7.

    Krueger, R. F. & DeYoung, C. G. The RDoC initiative and the structure of psychopathology. Psychophysiology 53, 351–354. https://doi.org/10.1111/psyp.12551 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • 8.

    Lahey, B. B., Krueger, R. F., Rathouz, P. J., Waldman, I. D. & Zald, D. H. A hierarchical causal taxonomy of psychopathology across the life span. Psychol. Bull. 143, 142–186. https://doi.org/10.1037/bul0000069 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • 9.

    Waszczuk, M. A. et al. Redefining phenotypes to advance psychiatric genetics: implications from hierarchical taxonomy of psychopathology. J. Abnorm. Psychol. 129, 143–161. https://doi.org/10.1037/abn0000486 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • 10.

    Robbins, T. W., Gillan, C. M., Smith, D. G., de Wit, S. & Ersche, K. D. Neurocognitive endophenotypes of impulsivity and compulsivity: towards dimensional psychiatry. Trends Cognit. Sci. 16, 81–91. https://doi.org/10.1016/j.tics.2011.11.009 (2012).

    Article 

    Google Scholar
     

  • 11.

    Figee, M. et al. Compulsivity in obsessive-compulsive disorder and addictions. Eur. Neuropsychopharmacol 26, 856–868. https://doi.org/10.1016/j.euroneuro.2015.12.003 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • 12.

    Moeller, F. G., Barratt, E. S., Dougherty, D. M., Schmitz, J. M. & Swann, A. C. Psychiatric aspects of impulsivity. Am. J. Psychiatry 158, 1783–1793. https://doi.org/10.1176/appi.ajp.158.11.1783 (2001).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • 13.

    Dalley, J. W. & Robbins, T. W. Fractionating impulsivity: Neuropsychiatric implications. Nat. Rev. Neurosci. 18, 158–171. https://doi.org/10.1038/nrn.2017.8 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • 14.

    Luigjes, J. et al. Defining compulsive behavior. Neuropsychol Rev 29, 4–13. https://doi.org/10.1007/s11065-019-09404-9 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Hollander, E. Obsessive-compulsive spectrum disorders: an overview. Psychiatr. Ann. 23, 355–358 (1993).

    Article 

    Google Scholar
     

  • 16.

    Hollander, E. & Benzaquen, D. S. The obsessive compulsive spectrum disorders. Int. Rev. Psychiatry 9, 99–110. https://doi.org/10.1080/09540269775628 (1997).

    Article 

    Google Scholar
     

  • 17.

    Fineberg, N. A. et al. Probing compulsive and impulsive behaviors, from animal models to endophenotypes: a narrative review. Neuropsychopharmacology 35, 591–604. https://doi.org/10.1038/npp.2009.185 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • 18.

    Fineberg, N. A. et al. New developments in human neurocognition: clinical, genetic, and brain imaging correlates of impulsivity and compulsivity. CNS Spectr. 19, 69–89. https://doi.org/10.1017/S1092852913000801 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Dalley, J. W., Everitt, B. J. & Robbins, T. W. Impulsivity, compulsivity, and top-down cognitive control. Neuron 69, 680–694. https://doi.org/10.1016/j.neuron.2011.01.020 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • 20.

    Gillan, C. M., Kosinski, M., Whelan, R., Phelps, E. A. & Daw, N. D. Characterizing a psychiatric symptom dimension related to deficits in goal-directed control. eLife 5, e11305. https://doi.org/10.7554/eLife.11305.001 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Parkes, L. et al. Transdiagnostic variations in impulsivity and compulsivity in obsessive-compulsive disorder and gambling disorder correlate with effective connectivity in cortical-striatal-thalamic-cortical circuits. NeuroImage 1, 116070. https://doi.org/10.1016/j.neuroimage.2019.116070 (2019).

    Article 

    Google Scholar
     

  • 22.

    Tiego, J. et al. Overlapping dimensional phenotypes of impulsivity and compulsivity explain co-occurrence of addictive and related behaviors. CNS Spectr. 24, 426–440. https://doi.org/10.1017/S1092852918001244 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • 23.

    Chamberlain, S. R. et al. Fractionation of impulsive and compulsive trans-diagnostic phenotypes and their longitudinal associations. Aust. N. Z. J. Psychiatry 0004867419844325 (2019).

  • 24.

    Chamberlain, S. R., Blackwell, A. D., Fineberg, N. A., Robbins, T. W. & Sahakian, B. J. The neuropsychology of obsessive compulsive disorder: the importance of failures in cognitive and behavioural inhibition as candidate endophenotypic markers. Neurosci. Biobehav. Rev. 29, 399–419. https://doi.org/10.1016/j.neubiorev.2004.11.006 (2005).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • 25.

    Cuzen, N. L. & Stein, D. J. in Behavioral Addictions (eds K. P. Rosenberg & L. C. Feder) Ch. 2, 19–34 (Academic Press, 2014).

  • 26.

    Yucel, M. et al. A transdiagnostic dimensional approach towards a neuropsychological assessment for addiction: an international Delphi consensus study. Addiction 114, 1095–1109. https://doi.org/10.1111/add.14424 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • 27.

    Chamberlain, S. R. et al. Fractionation of impulsive and compulsive trans-diagnostic phenotypes and their longitudinal associations. Aust. N. Z. J. Psychiatry 53, 896–907. https://doi.org/10.1177/0004867419844325 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Friston, K. J., Harrison, L. & Penny, W. Dynamic causal modelling. NeuroImage 19, 1273–1302. https://doi.org/10.1016/S1053-8119(03)00202-7 (2003).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • 29.

    Voon, V., Reiter, A., Sebold, M. & Groman, S. Model-based control in dimensional psychiatry. Biol. Psychiat. 82, 391–400. https://doi.org/10.1016/j.biopsych.2017.04.006 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • 30.

    McTeague, L. M., Goodkind, M. S. & Etkin, A. Transdiagnostic impairment of cognitive control in mental illness. J. Psychiatr. Res. 83, 37–46. https://doi.org/10.1016/j.jpsychires.2016.08.001 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Kendler, K. S. & Neale, M. C. Endophenotype: a conceptual analysis. Mol. Psychiatry 15, 789–797. https://doi.org/10.1038/mp.2010.8 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    van Dongen, J., Slagboom, P. E., Draisma, H. H. M., Martin, N. G. & Boomsma, D. I. The continuing value of twin studies in the omics era. Nat. Rev. Genet. 13, 640–653. https://doi.org/10.1038/nrg3243 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • 33.

    Plomin, R. & Haworth, C. M. Genetics and intervention research. Perspect. Psychol. Sci. 5, 557–563. https://doi.org/10.1177/1745691610383513 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Boomsma, D., Busjahn, A. & Peltonen, L. Classical twin studies and beyond. Nat. Rev. Genet. 3, 872–882. https://doi.org/10.1038/nrg932 (2002).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • 35.

    Neale, M. C. & Cardon, L. R. Methodology for genetic studies of twins and families., Vol. 67 (Kluwer Academic Publishers, 1992).

  • 36.

    Rijsdijk, F. V. & Sham, P. C. Analytic approaches to twin data using structural equation models. Brief. Bioinform. 3, 119–133. https://doi.org/10.1093/bib/3.2.119 (2002).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • 37.

    Zyphur, M. J., Zhang, Z., Barsky, A. P. & Li, W. An ACE in the hole: twin family models for applied behavioral genetics research. Leadership Q. 24, 572–594. https://doi.org/10.1016/j.leaqua.2013.04.001 (2013).

    Article 

    Google Scholar
     

  • 38.

    Bezdjian, S., Baker, L. A. & Tuvblad, C. Genetic and environmental influences on impulsivity: a meta-analysis of twin, family and adoption studies. Clin. Psychol. Rev. 31, 1209–1223. https://doi.org/10.1016/j.cpr.2011.07.005 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Anokhin, A. P., Grant, J. D., Mulligan, R. C. & Heath, A. C. The genetics of impulsivity: evidence for the heritability of delay discounting. Biol. Psychiat. 77, 887–894. https://doi.org/10.1016/j.biopsych.2014.10.022 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • 40.

    Niv, S., Tuvblad, C., Raine, A., Wang, P. & Baker, L. A. Heritability and longitudinal stability of impulsivity in adolescence. Behav. Genet. 42, 378–392. https://doi.org/10.1007/s10519-011-9518-6 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • 41.

    Chamberlain, S. R., Leppink, E. W., Redden, S. A. & Grant, J. E. Are obsessive–compulsive symptoms impulsive, compulsive or both?. Compr. Psychiatry 68, 111–118. https://doi.org/10.1016/j.comppsych.2016.04.010 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Iervolino, A. C., Rijsdijk, F. V., Cherkas, L., Fullana, M. A. & Mataix-Cols, D. A multivariate twin study of obsessive-compulsive symptom dimensions. Arch. Gen. Psychiatry 68, 637–644. https://doi.org/10.1001/archgenpsychiatry.2011.54 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • 43.

    Monzani, B., Rijsdijk, F., Harris, J. & Mataix-Cols, D. The structure of genetic and environmental risk factors for dimensional representations of DSM-5 obsessive-compulsive spectrum disorders. JAMA Psychiatry 71, 182–189. https://doi.org/10.1001/jamapsychiatry.2013.3524 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • 44.

    van Grootheest, D. S., Boomsma, D. I., Hettema, J. M. & Kendler, K. S. Heritability of obsessive-compulsive symptom dimensions. Am. J. Med. Genet. B Neuropsychiatr. Genet. 147, 473–478. https://doi.org/10.1002/ajmg.b.30622 (2008).

    Article 

    Google Scholar
     

  • 45.

    Lopez-Sola, C. et al. Aetiological overlap between obsessive-compulsive related and anxiety disorder symptoms: multivariate twin study. Br. J. Psychiatry 208, 26–33. https://doi.org/10.1192/bjp.bp.114.156281 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • 46.

    Burton, C. L. et al. Heritability of obsessive–compulsive trait dimensions in youth from the general population. Transl. Psychiatry 8, 191. https://doi.org/10.1038/s41398-018-0249-9 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 47.

    Nicolini, H., Arnold, P., Nestadt, G., Lanzagorta, N. & Kennedy, J. L. Overview of genetics and obsessive–compulsive disorder. Psychiatry Res. 170, 7–14. https://doi.org/10.1016/j.psychres.2008.10.011 (2009).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • 48.

    van Grootheest, D. S., Cath, D. C., Beekman, A. T. & Boomsma, D. I. Twin studies on obsessive–compulsive disorder: a review. Twin Res. Hum. Genet. 8, 450–458. https://doi.org/10.1375/twin.8.5.450 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • 49.

    Taylor, S. Etiology of obsessions and compulsions: a meta-analysis and narrative review of twin studies. Clin. Psychol. Rev. 31, 1361–1372. https://doi.org/10.1016/j.cpr.2011.09.008 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • 50.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodol.) 57, 289–300 (1995).

    MathSciNet 
    MATH 

    Google Scholar
     

  • 51.

    Bandalos, D. L. Measurement theory and applications for the social science. (Guilford Publications, 2018).

  • 52.

    Grice, J. W. Computing and evaluating factor scores. Psychol. Methods 6, 430–450 (2001).

    Article 
    CAS 

    Google Scholar
     

  • 53.

    DiStefano, C., Zhu, M. & Mindrila, D. Understanding and using factor scores: considerations for the applied researcher. Pract. Assess. Res. Eval. 14, 1–11 (2009).


    Google Scholar
     

  • 54.

    Muthén, L. K. & Muthén, B. O. Mplus user’s guide. Seventh edn, (Muthén & Muthén, 1998-2012).

  • 55.

    Hoaglin, D. C. & Iglewicz, B. Fine-tuning some resistant rules for outlier labeling. Journal of the American Statistical Association 82, 1147–1149 (1987).

    Article 

    Google Scholar
     

  • 56.

    Bollen, K. A (Wiley, Structural equations with latent variables., 1989).


    Google Scholar
     

  • 57.

    Wagenmakers, E. J. A practical solution to the pervasive problems of p values. Psychon. Bull. Rev. 14, 779–804. https://doi.org/10.3758/BF03194105 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • 58.

    Raftery, A. E. Bayesian model selection in social research. Sociol. Methodol. 25, 111–164 (1995).

    Article 

    Google Scholar
     

  • 59.

    Chamberlain, S. R., Stochl, J., Redden, S. A. & Grant, J. E. Latent traits of impulsivity and compulsivity: toward dimensional psychiatry. Psychol. Med. 48, 1–12. https://doi.org/10.1017/S0033291717002185 (2017).

    Article 

    Google Scholar
     

  • 60.

    Kendler, K. S. & Baker, J. H. Genetic influences on measures of the environment: a systematic review. Psychol. Med. 37, 615–626. https://doi.org/10.1017/S0033291706009524 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • 61.

    Young, S. E. et al. Behavioral disinhibition: liability for externalizing spectrum disorders and its genetic and environmental relation to response inhibition across adolescence. J. Abnorm. Psychol. 118, 117–130. https://doi.org/10.1037/a0014657 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Young, S. E., Stallings, M. C., Corley, R. P., Krauter, K. S. & Hewitt, J. K. Genetic and environmental influences on behavioral disinhibition. Am. J. Med. Genet. 96, 684–695 (2000).

    Article 
    CAS 

    Google Scholar
     

  • 63.

    Iacono, W. G., Carlson, S. R., Taylor, J., Elkins, I. J. & McGue, M. Behavioral disinhibition and the development of substance-use disorders: findings from the Minnesota Twin family study. Dev. Psychopathol. 11, 869–900. https://doi.org/10.1017/S0954579499002369 (1999).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • 64.

    Iacono, W. G., Malone, S. M. & McGue, M. Behavioral disinhibition and the development of early-onset addiction: common and specific Influences. Annu. Rev. Clin. Psychol. 4, 325–348. https://doi.org/10.1146/annurev.clinpsy.4.022007.141157 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • 65.

    McGue, M. et al. A genome-wide association study of behavioral disinhibition. Behav. Genet. 43, 363–373. https://doi.org/10.1007/s10519-013-9606-x (2013).

    Article 
    PubMed 

    Google Scholar
     

  • 66.

    Hicks, B. M., Schalet, B. D., Malone, S. M., Iacono, W. G. & McGue, M. Psychometric and genetic architecture of substance use disorder and behavioral disinhibition measures for gene association studies. Behav. Genet. 41, 459–475. https://doi.org/10.1007/s10519-010-9417-2 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • 67.

    Vrieze, S. I., McGue, M., Miller, M. B., Hicks, B. M. & Iacono, W. G. Three mutually informative ways to understand the genetic relationships among behavioral disinhibition, alcohol use, drug use, nicotine use/dependence, and their co-occurrence: twin biometry, GCTA, and genome-wide scoring. Behav. Genet. 43, 97–107. https://doi.org/10.1007/s10519-013-9584-z (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 68.

    Derringer, J. et al. Genome-wide association study of behavioral disinhibition in a selected adolescent sample. Behav. Genet. 45, 375–381. https://doi.org/10.1007/s10519-015-9705-y (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 69.

    Patrick, C. J., Kramer, M. D., Krueger, R. F. & Markon, K. E. Optimizing efficiency of psychopathology assessment through quantitative modeling: development of a brief form of the Externalizing Spectrum Inventory. Psychol. Assess. 25, 1332–1348. https://doi.org/10.1037/a0034864 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 70.

    Bornovalova, M. A., Choate, A. M., Fatimah, H., Petersen, K. J. & Wiernik, B. M. Appropriate use of bifactor analysis in psychopathology research: appreciating benefits and limitations. Biol. Psychiat. 88, 18–27. https://doi.org/10.1016/j.biopsych.2020.01.013 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • 71.

    Parkes, L. et al. Transdiagnostic variations in impulsivity and compulsivity in obsessive-compulsive disorder and gambling disorder correlate with effective connectivity in cortical-striatal-thalamic-cortical circuits. Neuroimage 202, 116070. https://doi.org/10.1016/j.neuroimage.2019.116070 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 72.

    Basevitz, P., Pushkar, D., Chaikelson, J., Conway, M. & Dalton, C. Age-related differences in worry and related processes. Int. J. Aging Hum. Dev. 66, 283–305. https://doi.org/10.2190/AG.66.4.b (2008).

    Article 
    PubMed 

    Google Scholar
     

  • 73.

    Carstensen, L. L. The influence of a sense of time on human development. Science 312, 1913–1915. https://doi.org/10.1126/science.1127488 (2006).

    ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 74.

    Livingstone, K. M. & Isaacowitz, D. M. Situation selection and modification for emotion regulation in younger and older adults. Soc. Psychol. Person. Sci. 6, 904–910. https://doi.org/10.1177/1948550615593148 (2015).

    Article 

    Google Scholar
     

  • 75.

    Boswell, J. F., Thompson-Hollands, J., Farchione, T. J. & Barlow, D. H. Intolerance of uncertainty: a common factor in the treatment of emotional disorders. J. Clin. Psychol 69, 630–645. https://doi.org/10.1002/jclp.21965 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • 76.

    Einstein, D. A. Extension of the transdiagnostic model to focus on intolerance of uncertainty: a review of the literature and implications for treatment. Clin. Psychol. Sci. Pract. 21, 280–300. https://doi.org/10.1111/cpsp.12077 (2014).

    Article 

    Google Scholar
     

  • 77.

    Wilhelm, S., Berman, N. C., Keshaviah, A., Schwartz, R. A. & Steketee, G. Mechanisms of change in cognitive therapy for obsessive compulsive disorder: role of maladaptive beliefs and schemas. Behav. Res. Ther. 65, 5–10. https://doi.org/10.1016/j.brat.2014.12.006 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • 78.

    Cyders, M. A. & Coskunpinar, A. Measurement of constructs using self-report and behavioral lab tasks: Is there overlap in nomothetic span and construct representation for impulsivity?. Clin Psychol Rev 31, 965–982. https://doi.org/10.1016/j.cpr.2011.06.001 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • 79.

    Flint, J. & Munafò, M. R. The endophenotype concept in psychiatric genetics. Psychol. Med. 37, 163–180. https://doi.org/10.1017/S0033291706008750 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • 80.

    Gottesman, I. I. & Gould, T. D. The endophenotype concept in psychiatry: etymology and strategic intentions. Am. J. Psychiatry 160, 636–645 (2003).

    Article 

    Google Scholar
     

  • 81.

    Cuthbert, B. N. & Insel, T. R. Toward the future of psychiatric diagnosis: the seven pillars of RDoC. BMC Med. 11, 126. https://doi.org/10.1186/1741-7015-11-126 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 82.

    Gregory, A. M. & Brigitte, R. Endophenotypes in psychopathology research: where do we stand?. Annu. Rev. Clin. Psychol. 9, 177–213. https://doi.org/10.1146/annurev-clinpsy-050212-185540 (2013).

    Article 

    Google Scholar
     

  • 83.

    Bonifay, W., Lane, S. P. & Reise, S. P. Three concerns with applying a bifactor model as a structure of psychopathology. Clin. Psychol. Sci. 5, 184–186. https://doi.org/10.1177/2167702616657069 (2017).

    Article 

    Google Scholar
     

  • 84.

    Lahey, B. B., Krueger, R. F., Rathouz, P. J., Waldman, I. D. & Zald, D. H. Validity and utility of the general factor of psychopathology. World Psychiatry 16, 142–144. https://doi.org/10.1002/wps.20410 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 85.

    Bonifay, W. & Cai, L. On the complexity of item response theory models. Multivar. Behav. Res. 52, 465–484. https://doi.org/10.1080/00273171.2017.1309262 (2017).

    Article 

    Google Scholar
     

  • 86.

    Reise, S. P., Kim, D. S., Mansolf, M. & Widaman, K. F. Is the bifactor model a better model or is it just better at modeling implausible responses? Application of iteratively reweighted least squares to the rosenberg self-esteem scale. Multivar. Behav. Res. 51, 818–838. https://doi.org/10.1080/00273171.2016.1243461 (2016).

    Article 

    Google Scholar
     

  • 87.

    Markon, K. E. Bifactor and hierarchical models: specification, inference, and nterpretation. Annu. Rev. Clin. Psychol. 15, 51–69. https://doi.org/10.1146/annurev-clinpsy-050718-095522 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • 88.

    Kline, R. B. Principles and practice of structural equation modeling. 4th edn, (The Guilford Press, 2015).

  • 89.

    Hair, J. F., Black, W. C., Babin, B. J. & Anderson, R. E. Multivariate data analysis (Seventh edn, Pearson Education Limited, 2014).


    Google Scholar
     

  • 90.

    Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773–795. https://doi.org/10.1080/01621459.1995.10476572 (1995).

    MathSciNet 
    Article 
    MATH 

    Google Scholar
     

  • 91.

    Verhulst, B. A power calculator for the classical twin design. Behav. Genet. 47, 255–261. https://doi.org/10.1007/s10519-016-9828-9 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • 92.

    Visscher, P. M. Power of the classical twin design revisited. Twin Res. 7, 505–512. https://doi.org/10.1375/1369052042335250 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • 93.

    Kendler, K. S., Gardner, C. O., Gatz, M. & Pedersen, N. L. The sources of co-morbidity between major depression and generalized anxiety disorder in a Swedish national twin sample. Psychol. Med. 37, 453–462. https://doi.org/10.1017/S0033291706009135 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • 94.

    Bergen, S. E., Gardner, C. O. & Kendler, K. S. Age-related changes in heritability of behavioral phenotypes over adolescence and young adulthood: a meta-analysis. Twin Res. Hum. Genet. 10, 423–433. https://doi.org/10.1375/twin.10.3.423 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • 95.

    Bouchard, T. J. & Loehlin, J. C. Genes, evolution, and personality. Behav. Genet. 31, 243–273. https://doi.org/10.1023/A:1012294324713 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • 96.

    Jacobson, K. C., Prescott, C. A. & Kendler, K. S. Sex differences in the genetic and environmental influences on the development of antisocial behavior. Dev. Psychopathol. 14, 395–416. https://doi.org/10.1017/S0954579402002110 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • 97.

    Coskunpinar, A., Dir, A. L. & Cyders, M. A. Multidimensionality in impulsivity and alcohol use: a meta-analysis using the UPPS model of impulsivity. Alcohol Clin. Exp. Res. 37, 1441–1450. https://doi.org/10.1111/acer.12131 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 98.

    Cyders, M. A. et al. Integration of impulsivity and positive mood to predict risky behavior: development and validation of a measure of positive urgency. Psychol. Assess. 19, 107–118. https://doi.org/10.1037/1040-3590.19.1.107 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • 99.

    Smith, G. T. et al. On the validity and utility of discriminating among impulsivity-like traits. Assessment 14, 155–170. https://doi.org/10.1177/1073191106295527 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 100.

    Whiteside, S. P. & Lynam, D. R. The five factor model and impulsivity: using a structural model of personality to understand impulsivity. Person. Individ. Differ. 30, 669–689. https://doi.org/10.1016/S0191-8869(00)00064-7 (2001).

    Article 

    Google Scholar
     

  • 101.

    Whiteside, S. P., Lynam, D. R., Miller, J. D. & Reynolds, S. K. Validation of the UPPS impulsive behaviour scale: a four-factor model of impulsivity. Eur. J. Pers. 19, 559–574. https://doi.org/10.1002/per.556 (2005).

    Article 

    Google Scholar
     

  • 102.

    Gullo, M. J., Loxton, N. J. & Dawe, S. Impulsivity: four ways five factors are not basic to addiction. Addict. Behav. 39, 1547–1556. https://doi.org/10.1016/j.addbeh.2014.01.002 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • 103.

    Hamilton, K. R. et al. Rapid-response impulsivity: definitions, measurement issues, and clinical implications. Person. Disord. Theory Res. Treatm. 6, 168–181. https://doi.org/10.1037/per0000100 (2015).

    Article 

    Google Scholar
     

  • 104.

    Hamilton, K. R. et al. Choice Impulsivity: definitions, measurement issues, and clinical implications. Person. Disord. Theory Res. Treatm 6, 182–198. https://doi.org/10.1037/per0000099 (2015).

    Article 

    Google Scholar
     

  • 105.

    Cyders, M. A., Littlefield, A. K., Coffey, S. & Karyadi, K. A. Examination of a short English version of the UPPS-P Impulsive Behavior Scale. Addict. Behav. 39, 1372–1376. https://doi.org/10.1016/j.addbeh.2014.02.013 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 106.

    Smith, G. T. & Cyders, M. A. Integrating affect and impulsivity: the role of positive and negative urgency in substance use risk. Drug Alcohol. Depend. 163(Suppl 1), S3–S12. https://doi.org/10.1016/j.drugalcdep.2015.08.038 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 107.

    Cyders, M. A. & Smith, G. T. Emotion-based dispositions to rash action: positive and negative urgency. Psychol Bull 134, 807–828. https://doi.org/10.1037/a0013341 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 108.

    Ersche, K. D., Turton, A. J., Pradhan, S., Bullmore, E. T. & Robbins, T. W. Drug addiction endophenotypes: impulsive versus sensation-seeking personality traits. Biol. Psychiat. 68, 770–773. https://doi.org/10.1016/j.biopsych.2010.06.015 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • 109.

    Mathew, C. A. et al. Evidence for a heritable unidimensional symptom factor underlying obsessionality. Am. J. Med. Genet. Part B-Neuropsychiatr. Genet. 147B, 676–685. https://doi.org/10.1002/ajmg.b.30660 (2008).

    Article 

    Google Scholar
     

  • 110.

    Guo, K. et al. A psychometric validation study of the Impulsive-Compulsive Behaviours Checklist: a transdiagnostic tool for addictive and compulsive behaviours. Addict. Behav. 67, 26–33. https://doi.org/10.1016/j.addbeh.2016.11.021 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • 111.

    Rosario-Campos, M. C. et al. The dimensional Yale-Brown Obsessive–Compulsive Scale (DY-BOCS): an instrument for assessing obsessive–compulsive symptom dimensions. Mol. Psychiatry 11, 495–504. https://doi.org/10.1038/sj.mp.4001798 (2006).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • 112.

    Foa, E. B. et al. The obsessive-compulsive inventory: development and validation of a short version. Psychol. Assess. 14, 485–496. https://doi.org/10.1037//1040-3590.14.4.485 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • 113.

    Jarrar, Z. A. et al. Definitive zygosity scores in the peas in the pod questionnaire is a sensitive and accurate assessment of the zygosity of adult twins. Twin Res. Hum. Genet. 21, 146–154. https://doi.org/10.1017/thg.2018.9 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • 114.

    Ooki, S., Yamada, K., Asaka, A. & Hayakawa, K. Zygosity diagnosis of twins by questionnaire. Acta Genet. Med. Gemellologiae Twin Res. 39, 109–115. https://doi.org/10.1017/S0001566000005626 (1990).

    Article 
    CAS 

    Google Scholar
     

  • 115.

    Rietveld, M. J. H. et al. Zygosity diagnosis in young twins by parental report. Twin Res. 3, 134–141. https://doi.org/10.1375/twin.3.3.134 (2000).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • 116.

    Ooki, S., Yamada, K. & Asaka, A. Zygosity diagnosis of twins by questionnaire for twins’ mothers. Acta Genet. Med. Gemellologiae 42, 17–17 (1993).

    Article 
    CAS 

    Google Scholar
     

  • 117.

    Twins Research Australia. How to determine zygosity. https://twins.org.au/how-to-determine-zygosity. Accessed 12 April 2020.

  • 118.

    Cutler, T. L. et al. Why accurate knowledge of zygosity is important to twins. Twin Res. Hum. Genet. 18, 298–305. https://doi.org/10.1017/thg.2015.15 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • 119.

    Jackson, R. W., Snieder, H., Davis, H. & Treiber, F. A. Determination of twin zygosity: a comparison of DNA with various questionnaire indices. Twin Res. 4, 12–18. https://doi.org/10.1375/twin.4.1.12 (2001).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • 120.

    Murphy, K. et al. Twins research Australia: a new paradigm for driving twin research. Twin Res. Hum. Genet. 1, 1–8. https://doi.org/10.1017/thg.2019.101

  • 121.

    Christiansen, L. et al. Age- and sex-differences in the validity of questionnaire-based zygosity in twins. Twin Res. 6, 275–278. https://doi.org/10.1375/twin.6.4.275 (2012).

    Article 

    Google Scholar
     

  • 122.

    Lynam, D. R., Smith, G. T., Whiteside, S. P. & Cyders, M. A. The UPPS-P: Assessing five personality pathways to impulsive behavior (Technical report). (Purdue University, 2006).

  • 123.

    OCCWG. Psychometric validation of the Obsessive Beliefs Questionnaire and the Interpretation of Intrusions Inventory. Part 2: Factor analyses and testing of a brief version. Behav. Res. Ther. 43, 1527–1542. https://doi.org/10.1016/j.brat.2004.07.010 (2005).

  • 124.

    Carleton, R. N., Norton, M. A. & Asmundson, G. J. Fearing the unknown: a short version of the Intolerance of Uncertainty Scale. J. Anxiety Disord. 21, 105–117. https://doi.org/10.1016/j.janxdis.2006.03.014 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • 125.

    Reise, S. P. The rediscovery of bifactor measurement models. Multivar. Behav. Res. 47, 667–696. https://doi.org/10.1080/00273171.2012.715555 (2012).

    Article 

    Google Scholar
     

  • 126.

    Meredith, W. Measurement invariance, factor-analysis and factorial invariance. Psychometrika 58, 525–543. https://doi.org/10.1007/bf02294825 (1993).

    MathSciNet 
    Article 
    MATH 

    Google Scholar
     

  • 127.

    Jöreskog, K. G. in Testing structural equation models (eds K. A. Bollen & S. Long) (Sage Publications, 1993).

  • 128.

    Enders, C. K (The Guilford Press, Applied missing data analysis., 2010).


    Google Scholar
     

  • 129.

    Reise, S. P. & Waller, N. G. Item response theory and clinical measurement. Annu. Rev. Clin. Psychol. 5, 27–48. https://doi.org/10.1146/annurev.clinpsy.032408.153553 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • 130.

    Devlieger, I., Mayer, A. & Rosseel, Y. Hypothesis testing using factor score regression: a comparison of four methods. Educ. Psychol. Measur. 76, 741–770. https://doi.org/10.1177/0013164415607618 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • 131.

    McArdle, J. J. Causal-modeling applied to psychonomic systems simulation. Behav. Res. Methods Instrum. 12, 193–209. https://doi.org/10.3758/bf03201598 (1980).

    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *