Chang, S., Stone, J., Demes, K. & Piscitelli, M. Consequences of oil spills: a review and framework for informing planning. Ecol. Soc. 19, 26 (2014).
Kingston, P. F. Long-term environmental impact of oil spills. Spill Sci. Technol. Bull. 7, 53–61 (2002).
Peterson, C. H. et al. Long-term ecosystem response to the exxon valdez oil spill. Science 302, 2082–2086 (2003).
Chinedu, E. & Chukwuemeka, C. K. Oil spillage and heavy metals toxicity risk in the Niger Delta, Nigeria. J. Health Pollut. 8, 180905 (2018).
Lindén, O. & Pålsson, J. Oil contamination in Ogoniland, Niger Delta. Ambio 42, 685–701 (2013).
Chow, J., Kopp, R. J. & Portney, P. R. Energy resources and global development. Science 302, 1528–1531 (2003).
French, K. E. & Terry, N. A high-throughput fluorescence-based assay for rapid identification of petroleum-degrading bacteria. Front. Microbiol. 10, 995 (2019).
Doshi, B., Sillanpää, M. & Kalliola, S. A review of bio-based materials for oil spill treatment. Water Res. 135, 262–277 (2018).
Das, N. & Chandran, P. Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol. Res. Int. 2011, 941810 (2011).
Sahl, J. The effects of in situ chemical oxidation on microbiological processes: a review. Remediation J. https://doi.org/10.1002/rem.20091 (2006).
Fingas, M. Chapter 23: An overview of in-situ burning. In Oil Spill Science and Technology (ed. Fingas, M.) 737–903 (Gulf Professional Publishing, Houston, 2011). https://doi.org/10.1016/B978-1-85617-943-0.10023-1.
Turner, N. R. & Renegar, D. A. Petroleum hydrocarbon toxicity to corals: a review. Mar. Pollut. Bull. 119, 1–16 (2017).
Michel, J., Shigenaka, G. & Hoff, R. Chapter 5 oil spill response and cleanup techniques. In An Introduction to Coastal Habitats and Biological Resources for Oil Spill Response 1–103 (NOAA/Hazardous Materials Response and Assessment Division, 1992).
French, K. E. Harnessing synthetic biology for sustainable development. Nat. Sustain. 2, 250–252 (2019).
Ben Said, S. & Or, D. Synthetic microbial ecology: engineering habitats for modular consortia. Front. Microbiol. 8, 1125 (2017).
Bernstein, H. C. Reconciling ecological and engineering design principles for building microbiomes. mSystems 4, e00106 (2019).
Escalante, A. E., Rebolleda-Gómez, M., Benítez, M. & Travisano, M. Ecological perspectives on synthetic biology: insights from microbial population biology. Front. Microbiol. 6, 143 (2015).
Berryman, A. A., Valenti, M. A., Harris, M. J. & Fulton, D. C. Ecological engineering—an idea whose time has come?. Trends Ecol. Evol. 7, 268–270 (1992).
Rojo, F. Degradation of alkanes by bacteria. Environ. Microbiol. 11, 2477–2490 (2009).
Carmichael, A. B. & Wong, L. L. Protein engineering of Bacillus megaterium CYP102. The oxidation of polycyclic aromatic hydrocarbons. Eur. J. Biochem. 268, 3117–3125 (2001).
Glieder, A., Farinas, E. T. & Arnold, F. H. Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase. Nat. Biotechnol. 20, 1135–1139 (2002).
Urgun-Demirtas, M., Stark, B. & Pagilla, K. Use of genetically engineered microorganisms (GEMs) for the bioremediation of contaminants. Crit. Rev. Biotechnol. 26, 145–164 (2006).
Gibson, D. One-step enzymatic assembly of DNA molecules up to several hundred kilobases in size. Protoc. Exch. https://doi.org/10.1038/nprot.2009.77 (2009).
Chessher, A., Breitling, R. & Takano, E. Bacterial microcompartments: biomaterials for synthetic biology-based compartmentalization strategies. ACS Biomater. Sci. Eng. 1, 345–351 (2015).
Pandey, G. & Jain, R. K. Bacterial chemotaxis toward environmental pollutants: role in bioremediation. Appl. Environ. Microbiol. 68, 5789–5795 (2002).
Amorim, G. C., Cisneros, D. A., Delepierre, M., Francetic, O. & Izadi-Pruneyre, N. 1H, 15N and 13C resonance assignments of PpdD, a type IV pilin from enterohemorrhagic Escherichia coli. Biomol. NMR Assign. 8, 43–46 (2014).
Lux, R. & Shi, W. Chemotaxis-guided movements in bacteria. Crit. Rev. Oral Biol. Med. 15, 207–220 (2004).
Murugesan, N., Panda, T. & Das, S. K. E. coli DH5α cell response to a sudden change in microfluidic chemical environment. In Conf. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Annu. Conf. 2015, 3213–3216 (2015).
Liu, J. et al. Molecular architecture of chemoreceptor arrays revealed by cryoelectron tomography of Escherichia coli minicells. Proc. Natl. Acad. Sci. 109, E1481–E1488 (2012).
Flemming, H.-C. & Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633 (2010).
Gutierrez, T. et al. Role of bacterial exopolysaccharides (EPS) in the fate of the oil released during the deepwater horizon oil spill. PLoS ONE 8, e67717 (2013).
Mangwani, N., Shukla, S. K., Kumari, S., Das, S. & Subba Rao, T. Effect of biofilm parameters and extracellular polymeric substance composition on polycyclic aromatic hydrocarbon degradation. RSC Adv. 6, 57540–57551 (2016).
Omarova, M. et al. Biofilm formation by hydrocarbon-degrading marine bacteria and its effects on oil dispersion. ACS Sustain. Chem. Eng. 7, 14490–14499 (2019).
Singh, R., Paul, D. & Jain, R. K. Biofilms: implications in bioremediation. Trends Microbiol. 14, 389–397 (2006).
Elani, Y., Gee, A., Law, R. V. & Ces, O. Engineering multi-compartment vesicle networks. Chem. Sci. 4, 3332–3338 (2013).
Elani, Y., Law, R. V. & Ces, O. Vesicle-based artificial cells as chemical microreactors with spatially segregated reaction pathways. Nat. Commun. 5, 5305 (2014).
Dmitriev, V. V. et al. Microorganisms form exocellular structures, trophosomes, to facilitate biodegradation of oil in aqueous media. FEMS Microbiol. Lett. 315, 134–140 (2011).
Basom, E. J., Manifold, B. A. & Thielges, M. C. Conformational heterogeneity and the affinity of substrate molecular recognition by cytochrome P450cam. Biochemistry 56, 3248–3256 (2017).
Werck-Reichhart, D. & Feyereisen, R. Cytochromes P450: a success story. Genome Biol. 1, reviews3003.1 (2000).
Marshall, A. G. & Rodgers, R. P. Petroleomics: the next grand challenge for chemical analysis. Acc. Chem. Res. 37, 53–59 (2004).
Oladeinde, A. et al. Hotspot mutations and ColE1 plasmids contribute to the fitness of Salmonella Heidelberg in poultry litter. PLoS ONE 13, e0202286 (2018).
Zinchenko, Z., Babykin, M. & Shestakov, S. Mobilization of non-conjugative plasmids into Rhodopseudomonas spheroides. J. Gen. Microbiol. 130, 1587–1590 (1984).
Berleman, J. & Auer, M. The role of bacterial outer membrane vesicles for intra- and interspecies delivery. Environ. Microbiol. 15, 347–354 (2013).
Frost, L. S., Leplae, R., Summers, A. O. & Toussaint, A. Mobile genetic elements: the agents of open source evolution. Nat. Rev. Microbiol. 3, 722–732 (2005).
Fulsundar, S. et al. Gene transfer potential of outer membrane vesicles of Acinetobacter baylyi and effects of stress on vesiculation. Appl. Environ. Microbiol. 80, 3469–3483 (2014).
Ippen-Ihler, K. A. & Minkley, E. G. The conjugation system of F, the fertility factor of Escherichia coli. Annu. Rev. Genet. 20, 593–624 (1986).
Dougan, G., Crosa, J. H. & Falkow, S. Mobilization of the Escherichia coli plasmid ColE1 (Colicin E1) and ColE1 vectors used in recombinant DNA experiments. J. Infect. Dis. 137, 676–680 (1978).
Udo, E. E. & Jacob, L. E. Conjugative transfer of high-level mupirocin resistance and the mobilization of non-conjugative plasmids in Staphylococcus aureus. Microb. Drug Resist. 4, 185–193 (1998).
Yin, X. & Stotzky, G. Gene transfer among bacteria in natural environments. In Advances in Applied Microbiology (eds Neidleman, S. L. & Laskin, A. I.) vol. 45 153–212 (Academic Press, New York, 1997).
Paul, J. H., Thurmond, J. M., Frischer, M. E. & Cannon, J. P. Intergeneric natural plasmid transformation between E. coli and a marine Vibrio species. Mol. Ecol. 1, 37–46 (1992).
Baidya, A. K., Bhattacharya, S., Dubey, G. P., Mamou, G. & Ben-Yehuda, S. Bacterial nanotubes: a conduit for intercellular molecular trade. Curr. Opin. Microbiol. 42, 1–6 (2018).
Dubey, G. P. & Ben-Yehuda, S. Intercellular nanotubes mediate bacterial communication. Cell 144, 590–600 (2011).
van der Meer, J. R. & Sentchilo, V. Genomic islands and the evolution of catabolic pathways in bacteria. Curr. Opin. Biotechnol. 14, 248–254 (2003).
Wiedenbeck, J. & Cohan, F. M. Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol. Rev. 35, 957–976 (2011).
Neilson, J. W. et al. Frequency of horizontal gene transfer of a large catabolic plasmid (pJP4) in soil. Appl. Environ. Microbiol. 60, 4053–4058 (1994).
Newby, D. T., Josephson, K. L. & Pepper, I. L. Detection and characterization of plasmid pJP4 transfer to indigenous soil bacteria. Appl. Environ. Microbiol. 66, 290–296 (2000).
Rensing, C., Newby, D. T. & Pepper, I. L. The role of selective pressure and selfish DNA in horizontal gene transfer and soil microbial community adaptation. Soil Biol. Biochem. 34, 285–296 (2002).
Pérez-Mendoza, D. & de la Cruz, F. Escherichia coli genes affecting recipient ability in plasmid conjugation: are there any?. BMC Genom. 10, 71 (2009).
Stabb, E. V. & Ruby, E. G. RP4-based plasmids for conjugation between Escherichia coli and members of the Vibrionaceae. Methods Enzymol. 358, 413–426. https://doi.org/10.1016/s0076-6879(02)58106-4 (2002).
Chu, H. Y., Sprouffske, K. & Wagner, A. Assessing the benefits of horizontal gene transfer by laboratory evolution and genome sequencing. BMC Evol. Biol. 18, 54 (2018).
Milner, D. S. et al. Environment-dependent fitness gains can be driven by horizontal gene transfer of transporter-encoding genes. Proc. Natl. Acad. Sci. 116, 5613–5622 (2019).
Sheth, R. U., Cabral, V., Chen, S. P. & Wang, H. H. Manipulating bacterial communities by in situ microbiome engineering. Trends Genet. TIG 32, 189–200 (2016).
de Lorenzo, V. Seven microbial bio-processes to help the planet. Microb. Biotechnol. 10, 995–998 (2017).
Shih, C.-H., Chen, H.-Y., Lee, H.-C. & Tsai, H.-J. Purple chromoprotein gene serves as a new selection marker for transgenesis of the microalga Nannochloropsis oculata. PLoS ONE 10, e0120780 (2015).
Wozniak, C. A., McClung, G., Gagliardi, J., Segal, M. & Matthews, K. Regulation of genetically engineered microorganisms under FIFRA, FFDCA and TSCA. In Regulation of Agricultural Biotechnology: The United States and Canada (eds Wozniak, C. A. & McHughen, A.) 57–94 (Springer, Dordrecht, 2012). https://doi.org/10.1007/978-94-007-2156-2_4
Cam, D. & Gagni, S. Determination of petroleum hydrocarbons in contaminated soils using solid-phase microextraction with gas chromatography-mass spectrometry. J. Chromatogr. Sci. 39, 481–486 (2001).