Horizontal ‘gene drives’ harness indigenous bacteria for bioremediation


  • 1.

    Chang, S., Stone, J., Demes, K. & Piscitelli, M. Consequences of oil spills: a review and framework for informing planning. Ecol. Soc. 19, 26 (2014).


    Google Scholar
     

  • 2.

    Kingston, P. F. Long-term environmental impact of oil spills. Spill Sci. Technol. Bull. 7, 53–61 (2002).

    CAS 

    Google Scholar
     

  • 3.

    Peterson, C. H. et al. Long-term ecosystem response to the exxon valdez oil spill. Science 302, 2082–2086 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Chinedu, E. & Chukwuemeka, C. K. Oil spillage and heavy metals toxicity risk in the Niger Delta, Nigeria. J. Health Pollut. 8, 180905 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Lindén, O. & Pålsson, J. Oil contamination in Ogoniland, Niger Delta. Ambio 42, 685–701 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Chow, J., Kopp, R. J. & Portney, P. R. Energy resources and global development. Science 302, 1528–1531 (2003).

    PubMed 

    Google Scholar
     

  • 7.

    French, K. E. & Terry, N. A high-throughput fluorescence-based assay for rapid identification of petroleum-degrading bacteria. Front. Microbiol. 10, 995 (2019).


    Google Scholar
     

  • 8.

    Doshi, B., Sillanpää, M. & Kalliola, S. A review of bio-based materials for oil spill treatment. Water Res. 135, 262–277 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Das, N. & Chandran, P. Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol. Res. Int. 2011, 941810 (2011).

    PubMed 

    Google Scholar
     

  • 10.

    Sahl, J. The effects of in situ chemical oxidation on microbiological processes: a review. Remediation J. https://doi.org/10.1002/rem.20091 (2006).

    Article 

    Google Scholar
     

  • 11.

    Fingas, M. Chapter 23: An overview of in-situ burning. In Oil Spill Science and Technology (ed. Fingas, M.) 737–903 (Gulf Professional Publishing, Houston, 2011). https://doi.org/10.1016/B978-1-85617-943-0.10023-1.


    Google Scholar
     

  • 12.

    Turner, N. R. & Renegar, D. A. Petroleum hydrocarbon toxicity to corals: a review. Mar. Pollut. Bull. 119, 1–16 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Michel, J., Shigenaka, G. & Hoff, R. Chapter 5 oil spill response and cleanup techniques. In An Introduction to Coastal Habitats and Biological Resources for Oil Spill Response 1–103 (NOAA/Hazardous Materials Response and Assessment Division, 1992).

  • 14.

    French, K. E. Harnessing synthetic biology for sustainable development. Nat. Sustain. 2, 250–252 (2019).


    Google Scholar
     

  • 15.

    Ben Said, S. & Or, D. Synthetic microbial ecology: engineering habitats for modular consortia. Front. Microbiol. 8, 1125 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Bernstein, H. C. Reconciling ecological and engineering design principles for building microbiomes. mSystems 4, e00106 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Escalante, A. E., Rebolleda-Gómez, M., Benítez, M. & Travisano, M. Ecological perspectives on synthetic biology: insights from microbial population biology. Front. Microbiol. 6, 143 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Berryman, A. A., Valenti, M. A., Harris, M. J. & Fulton, D. C. Ecological engineering—an idea whose time has come?. Trends Ecol. Evol. 7, 268–270 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Rojo, F. Degradation of alkanes by bacteria. Environ. Microbiol. 11, 2477–2490 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Carmichael, A. B. & Wong, L. L. Protein engineering of Bacillus megaterium CYP102. The oxidation of polycyclic aromatic hydrocarbons. Eur. J. Biochem. 268, 3117–3125 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Glieder, A., Farinas, E. T. & Arnold, F. H. Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase. Nat. Biotechnol. 20, 1135–1139 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Urgun-Demirtas, M., Stark, B. & Pagilla, K. Use of genetically engineered microorganisms (GEMs) for the bioremediation of contaminants. Crit. Rev. Biotechnol. 26, 145–164 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Gibson, D. One-step enzymatic assembly of DNA molecules up to several hundred kilobases in size. Protoc. Exch. https://doi.org/10.1038/nprot.2009.77 (2009).

    Article 

    Google Scholar
     

  • 24.

    Chessher, A., Breitling, R. & Takano, E. Bacterial microcompartments: biomaterials for synthetic biology-based compartmentalization strategies. ACS Biomater. Sci. Eng. 1, 345–351 (2015).

    CAS 

    Google Scholar
     

  • 25.

    Pandey, G. & Jain, R. K. Bacterial chemotaxis toward environmental pollutants: role in bioremediation. Appl. Environ. Microbiol. 68, 5789–5795 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Amorim, G. C., Cisneros, D. A., Delepierre, M., Francetic, O. & Izadi-Pruneyre, N. 1H, 15N and 13C resonance assignments of PpdD, a type IV pilin from enterohemorrhagic Escherichia coli. Biomol. NMR Assign. 8, 43–46 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Lux, R. & Shi, W. Chemotaxis-guided movements in bacteria. Crit. Rev. Oral Biol. Med. 15, 207–220 (2004).

    PubMed 

    Google Scholar
     

  • 28.

    Murugesan, N., Panda, T. & Das, S. K. E. coli DH5α cell response to a sudden change in microfluidic chemical environment. In Conf. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Annu. Conf. 2015, 3213–3216 (2015).

  • 29.

    Liu, J. et al. Molecular architecture of chemoreceptor arrays revealed by cryoelectron tomography of Escherichia coli minicells. Proc. Natl. Acad. Sci. 109, E1481–E1488 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Flemming, H.-C. & Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633 (2010).

    CAS 

    Google Scholar
     

  • 31.

    Gutierrez, T. et al. Role of bacterial exopolysaccharides (EPS) in the fate of the oil released during the deepwater horizon oil spill. PLoS ONE 8, e67717 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Mangwani, N., Shukla, S. K., Kumari, S., Das, S. & Subba Rao, T. Effect of biofilm parameters and extracellular polymeric substance composition on polycyclic aromatic hydrocarbon degradation. RSC Adv. 6, 57540–57551 (2016).

    CAS 

    Google Scholar
     

  • 33.

    Omarova, M. et al. Biofilm formation by hydrocarbon-degrading marine bacteria and its effects on oil dispersion. ACS Sustain. Chem. Eng. 7, 14490–14499 (2019).

    CAS 

    Google Scholar
     

  • 34.

    Singh, R., Paul, D. & Jain, R. K. Biofilms: implications in bioremediation. Trends Microbiol. 14, 389–397 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Elani, Y., Gee, A., Law, R. V. & Ces, O. Engineering multi-compartment vesicle networks. Chem. Sci. 4, 3332–3338 (2013).

    CAS 

    Google Scholar
     

  • 36.

    Elani, Y., Law, R. V. & Ces, O. Vesicle-based artificial cells as chemical microreactors with spatially segregated reaction pathways. Nat. Commun. 5, 5305 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Dmitriev, V. V. et al. Microorganisms form exocellular structures, trophosomes, to facilitate biodegradation of oil in aqueous media. FEMS Microbiol. Lett. 315, 134–140 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Basom, E. J., Manifold, B. A. & Thielges, M. C. Conformational heterogeneity and the affinity of substrate molecular recognition by cytochrome P450cam. Biochemistry 56, 3248–3256 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Werck-Reichhart, D. & Feyereisen, R. Cytochromes P450: a success story. Genome Biol. 1, reviews3003.1 (2000).

  • 40.

    Marshall, A. G. & Rodgers, R. P. Petroleomics: the next grand challenge for chemical analysis. Acc. Chem. Res. 37, 53–59 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Oladeinde, A. et al. Hotspot mutations and ColE1 plasmids contribute to the fitness of Salmonella Heidelberg in poultry litter. PLoS ONE 13, e0202286 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Zinchenko, Z., Babykin, M. & Shestakov, S. Mobilization of non-conjugative plasmids into Rhodopseudomonas spheroides. J. Gen. Microbiol. 130, 1587–1590 (1984).

    CAS 

    Google Scholar
     

  • 43.

    Berleman, J. & Auer, M. The role of bacterial outer membrane vesicles for intra- and interspecies delivery. Environ. Microbiol. 15, 347–354 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Frost, L. S., Leplae, R., Summers, A. O. & Toussaint, A. Mobile genetic elements: the agents of open source evolution. Nat. Rev. Microbiol. 3, 722–732 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Fulsundar, S. et al. Gene transfer potential of outer membrane vesicles of Acinetobacter baylyi and effects of stress on vesiculation. Appl. Environ. Microbiol. 80, 3469–3483 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Ippen-Ihler, K. A. & Minkley, E. G. The conjugation system of F, the fertility factor of Escherichia coli. Annu. Rev. Genet. 20, 593–624 (1986).

    CAS 
    PubMed 

    Google Scholar
     

  • 47.

    Dougan, G., Crosa, J. H. & Falkow, S. Mobilization of the Escherichia coli plasmid ColE1 (Colicin E1) and ColE1 vectors used in recombinant DNA experiments. J. Infect. Dis. 137, 676–680 (1978).

    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Udo, E. E. & Jacob, L. E. Conjugative transfer of high-level mupirocin resistance and the mobilization of non-conjugative plasmids in Staphylococcus aureus. Microb. Drug Resist. 4, 185–193 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • 49.

    Yin, X. & Stotzky, G. Gene transfer among bacteria in natural environments. In Advances in Applied Microbiology (eds Neidleman, S. L. & Laskin, A. I.) vol. 45 153–212 (Academic Press, New York, 1997).


    Google Scholar
     

  • 50.

    Paul, J. H., Thurmond, J. M., Frischer, M. E. & Cannon, J. P. Intergeneric natural plasmid transformation between E. coli and a marine Vibrio species. Mol. Ecol. 1, 37–46 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Baidya, A. K., Bhattacharya, S., Dubey, G. P., Mamou, G. & Ben-Yehuda, S. Bacterial nanotubes: a conduit for intercellular molecular trade. Curr. Opin. Microbiol. 42, 1–6 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 52.

    Dubey, G. P. & Ben-Yehuda, S. Intercellular nanotubes mediate bacterial communication. Cell 144, 590–600 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    van der Meer, J. R. & Sentchilo, V. Genomic islands and the evolution of catabolic pathways in bacteria. Curr. Opin. Biotechnol. 14, 248–254 (2003).

    PubMed 

    Google Scholar
     

  • 54.

    Wiedenbeck, J. & Cohan, F. M. Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol. Rev. 35, 957–976 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 55.

    Neilson, J. W. et al. Frequency of horizontal gene transfer of a large catabolic plasmid (pJP4) in soil. Appl. Environ. Microbiol. 60, 4053–4058 (1994).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 56.

    Newby, D. T., Josephson, K. L. & Pepper, I. L. Detection and characterization of plasmid pJP4 transfer to indigenous soil bacteria. Appl. Environ. Microbiol. 66, 290–296 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Rensing, C., Newby, D. T. & Pepper, I. L. The role of selective pressure and selfish DNA in horizontal gene transfer and soil microbial community adaptation. Soil Biol. Biochem. 34, 285–296 (2002).

    CAS 

    Google Scholar
     

  • 58.

    Pérez-Mendoza, D. & de la Cruz, F. Escherichia coli genes affecting recipient ability in plasmid conjugation: are there any?. BMC Genom. 10, 71 (2009).


    Google Scholar
     

  • 59.

    Stabb, E. V. & Ruby, E. G. RP4-based plasmids for conjugation between Escherichia coli and members of the Vibrionaceae. Methods Enzymol. 358, 413–426. https://doi.org/10.1016/s0076-6879(02)58106-4 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 60.

    Chu, H. Y., Sprouffske, K. & Wagner, A. Assessing the benefits of horizontal gene transfer by laboratory evolution and genome sequencing. BMC Evol. Biol. 18, 54 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 61.

    Milner, D. S. et al. Environment-dependent fitness gains can be driven by horizontal gene transfer of transporter-encoding genes. Proc. Natl. Acad. Sci. 116, 5613–5622 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 62.

    Sheth, R. U., Cabral, V., Chen, S. P. & Wang, H. H. Manipulating bacterial communities by in situ microbiome engineering. Trends Genet. TIG 32, 189–200 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 63.

    de Lorenzo, V. Seven microbial bio-processes to help the planet. Microb. Biotechnol. 10, 995–998 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Shih, C.-H., Chen, H.-Y., Lee, H.-C. & Tsai, H.-J. Purple chromoprotein gene serves as a new selection marker for transgenesis of the microalga Nannochloropsis oculata. PLoS ONE 10, e0120780 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 65.

    Wozniak, C. A., McClung, G., Gagliardi, J., Segal, M. & Matthews, K. Regulation of genetically engineered microorganisms under FIFRA, FFDCA and TSCA. In Regulation of Agricultural Biotechnology: The United States and Canada (eds Wozniak, C. A. & McHughen, A.) 57–94 (Springer, Dordrecht, 2012). https://doi.org/10.1007/978-94-007-2156-2_4


    Google Scholar
     

  • 66.

    Cam, D. & Gagni, S. Determination of petroleum hydrocarbons in contaminated soils using solid-phase microextraction with gas chromatography-mass spectrometry. J. Chromatogr. Sci. 39, 481–486 (2001).

    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *