[ad_1]

  • 1.

    Anderson, B., Schumacher, A., Guikema, S., Quiring, S., & Ferreri, J.. Stormwindmodel: Model Tropical Cyclone Wind Speeds, (2018). R package version 0.1.1. https://CRAN.R-project.org/package=stormwindmodel.

  • 2.

    Anderson, K. When the lights go out. Nat. Energy 5(3), 189–190 (2020).

    ADS 
    MathSciNet 

    Google Scholar
     

  • 3.

    Camargo, S. J. Global and regional aspects of tropical cyclone activity in the CMIP5 models. J. Clim. 26(24), 9880–9902 (2013).

    ADS 

    Google Scholar
     

  • 4.

    Chavas, D., Yonekura, E., Karamperidou, C., Cavanaugh, N. & Serafin, K. US hurricanes and economic damage: Extreme value perspective. Nat. Hazards Rev. 14(4), 237–246 (2013).


    Google Scholar
     

  • 5.

    Chavas, D. R. & Reed, K. A. Dynamical aquaplanet experiments with uniform thermal forcing: System dynamics and implications for tropical cyclone genesis and size. J. Atmos. Sci. 76(8), 2257–2274 (2019).

    ADS 

    Google Scholar
     

  • 6.

    Contento, A., Xu, H. & Gardoni, P. Risk analysis for hurricanes accounting for the effects of climate change. In Climate Adaptation Engineering 39–72 (Elsevier, New York, 2019).


    Google Scholar
     

  • 7.

    Darestani, Y. M., Shafieezadeh, A. & DesRoches, R. Effects of adjacent spans and correlated failure events on system-level hurricane reliability of power distribution lines. IEEE Trans. Power Deliv. 33(5), 2305–2314 (2017).


    Google Scholar
     

  • 8.

    Di Lorenzo, P. usmap: US Maps Including Alaska and Hawaii (2019). R package version 0.5.0. https://CRAN.R-project.org/package=usmap.

  • 9.

    Efron, B. & Stein, C. The jackknife estimate of variance. Ann. Stat. 20, 586–596 (1981).

    MathSciNet 
    MATH 

    Google Scholar
     

  • 10.

    Emanuel, K. A. Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc. Nat. Acad. Sci. 110(30), 12219–12224 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Ghanem, R. G. & Spanos, P. D. Stochastic Finite Elements: A Spectral Approach (Courier Corporation, North Chelmsford, 2003).


    Google Scholar
     

  • 12.

    Guikema, S., & Nateghi, R. Modeling power outage risk from natural hazards. In Oxford Research Encyclopedia of Natural Hazard Science. (2018).

  • 13.

    Guikema, S. D. et al. Predicting hurricane power outages to support storm response planning. IEEE Access. 2, 1364–1373 (2014).


    Google Scholar
     

  • 14.

    Hill, K. A. & Lackmann, G. M. The impact of future climate change on TC intensity and structure: A downscaling approach. J. Clim. 24(17), 4644–4661 (2011).

    ADS 

    Google Scholar
     

  • 15.

    Hoeffding, W. A class of statistics with asymptotically normal distribution. In Breakthroughs in Statistics 308–334 (Springer, Berlin, 1992).


    Google Scholar
     

  • 16.

    Ji, C. et al. Large-scale data analysis of power grid resilience across multiple US service regions. Nat. Energy 1(5), 1–8 (2016).


    Google Scholar
     

  • 17.

    Jones, B. A., Doostan, A. & Born, G. H. Nonlinear propagation of orbit uncertainty using non-intrusive polynomial chaos. J. Guid. Control Dyn. 36(2), 430–444 (2013).

    ADS 

    Google Scholar
     

  • 18.

    Kaplan, J. & DeMaria, M. A simple empirical model for predicting the decay of tropical cyclone winds after landfall. J. Appl. Meteorol. 34(11), 2499–2512 (1995).

    ADS 

    Google Scholar
     

  • 19.

    Klotzbach, P. J. et al. Surface pressure a more skillful predictor of normalized hurricane damage than maximum sustained wind. Bull. Am. Meteorol. Soc. 20, 20 (2020).


    Google Scholar
     

  • 20.

    Knutson, T. et al. Tropical cyclones and climate change assessment: Part II. Projected response to anthropogenic warming. Bull. Am. Meteorol. Soc. 20, 19 (2019).


    Google Scholar
     

  • 21.

    Knutson, T. R. & Tuleya, R. E. Impact of CO(_2)-induced warming on simulated hurricane intensity and precipitation: Sensitivity to the choice of climate model and convective parameterization. J. Clim. 17(18), 3477–3495 (2004).

    ADS 

    Google Scholar
     

  • 22.

    Knutson, T. R. et al. Tropical cyclones and climate change. Nat. Geosci. 3(3), 157–163 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 23.

    Knutson, T. R. et al. Global projections of intense tropical cyclone activity for the late twenty-first century from dynamical downscaling of cmip5/rcp4. 5 scenarios. J. Clim. 28(18), 7203–7224 (2015).

    ADS 

    Google Scholar
     

  • 24.

    Kossin, J. P., Emanuel, K. A. & Vecchi, G. A. The poleward migration of the location of tropical cyclone maximum intensity. Nature 509(7500), 349–352 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Landsea, C. W. & Franklin, J. L. Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Weather Rev. 141(10), 3576–3592 (2013).

    ADS 

    Google Scholar
     

  • 26.

    Lin, N. Tropical cyclones and heatwaves. Nat. Clim. Change 9(8), 579–580 (2019).

    ADS 

    Google Scholar
     

  • 27.

    MacKenzie, C. A. & Barker, K. Empirical data and regression analysis for estimation of infrastructure resilience with application to electric power outages. J. Infrastruct. Syst. 19(1), 25–35 (2013).


    Google Scholar
     

  • 28.

    Maia-Silva, D., Kumar, R. & Nateghi, R. The critical role of humidity in modeling summer electricity demand across the United States. Nat. Commun. 11(1), 1–8 (2020).


    Google Scholar
     

  • 29.

    Mensah, A. F. & Dueñas-Osorio, L. Efficient resilience assessment framework for electric power systems affected by hurricane events. J. Struct. Eng. 142(8), C4015013 (2016).


    Google Scholar
     

  • 30.

    Mukherjee, S., Nateghi, R. & Hastak, M. A multi-hazard approach to assess severe weather-induced major power outage risks in the US. Reliabil. Eng. Syst. Saf. 175, 283–305 (2018).


    Google Scholar
     

  • 31.

    Nateghi, R. Multi-dimensional infrastructure resilience modeling: An application to hurricane-prone electric power distribution systems. IEEE Access 6, 13478–13489 (2018).


    Google Scholar
     

  • 32.

    Nateghi, R., Guikema, S. D. & Quiring, S. M. Comparison and validation of statistical methods for predicting power outage durations in the event of hurricanes. Risk Anal. Int. J. 31(12), 1897–1906 (2011).


    Google Scholar
     

  • 33.

    Nateghi, R., Guikema, S. & Quiring, S. M. Power outage estimation for tropical cyclones: Improved accuracy with simpler models. Risk Anal. 34(6), 1069–1078 (2014).

    PubMed 

    Google Scholar
     

  • 34.

    Nateghi, R., Guikema, S. D. & Quiring, S. M. Forecasting hurricane-induced power outage durations. Nat. Hazards 74(3), 1795–1811 (2014).


    Google Scholar
     

  • 35.

    Nateghi, R., Guikema, S. D., Wu, Y. & Bayan Bruss, C. Critical assessment of the foundations of power transmission and distribution reliability metrics and standards. Risk Anal. 36(1), 4–15 (2016).

    PubMed 

    Google Scholar
     

  • 36.

    NECI. US billion-dollar weather and climate disasters. NOAA National Centers for Environmental Information (NECI) updates this data periodically. https://www.ncdc.noaa.gov/billions. (2019).

  • 37.

    Ouyang, M. & Duenas-Osorio, L. Multi-dimensional hurricane resilience assessment of electric power systems. Struct. Saf. 48, 15–24 (2014).


    Google Scholar
     

  • 38.

    Perera, A. T. D., Nik, V. M., Chen, D., Scartezzini, J.-L. & Hong, T. Quantifying the impacts of climate change and extreme climate events on energy systems. Nat. Energy 5(2), 150–159 (2020).

    ADS 

    Google Scholar
     

  • 39.

    Pielke, R. A. Jr. et al. Normalized hurricane damage in the United States: 1900–2005. Nat. Hazards Rev. 9(1), 29–42 (2008).


    Google Scholar
     

  • 40.

    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2020). https://www.R-project.org/.

  • 41.

    Reyna, J. L. & Chester, M. V. Energy efficiency to reduce residential electricity and natural gas use under climate change. Nat. Commun. 8(1), 1–12 (2017).


    Google Scholar
     

  • 42.

    Saltelli, A. Making best use of model evaluations to compute sensitivity indices. Comput. Phys. Commun. 145(2), 280–297 (2002).

    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • 43.

    Saltelli, A., Tarantola, S., Campolongo, F. & Ratto, M. Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models Vol. 1 (Wiley Online Library, Oxford, 2004).


    Google Scholar
     

  • 44.

    Saltelli, A. et al. Global Sensitivity Analysis: The Primer (Wiley, New York, 2008).


    Google Scholar
     

  • 45.

    Sobol, I. M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55(1–3), 271–280 (2001).

    MathSciNet 
    MATH 

    Google Scholar
     

  • 46.

    Sobol, I. M. et al. Sensitivity estimates for nonlinear mathematical models. Math. Modell. Comput. Exp. 1(4), 407–414 (1993).

    MathSciNet 
    MATH 

    Google Scholar
     

  • 47.

    Staid, A., Guikema, S. D., Nateghi, R., Quiring, S. M. & Gao, M. Z. Simulation of tropical cyclone impacts to the US power system under climate change scenarios. Clim. Change 127(3–4), 535–546 (2014).

    ADS 

    Google Scholar
     

  • 48.

    Sugi, M., Murakami, H. & Yoshimura, J. On the mechanism of tropical cyclone frequency changes due to global warming. J. Meteorol. Soc. Jpn. Ser. II 90, 397–408 (2012).


    Google Scholar
     

  • 49.

    Sugi, M., Yoshida, K. & Murakami, H. More tropical cyclones in a cooler climate?. Geophys. Res. Lett. 42(16), 6780–6784 (2015).

    ADS 

    Google Scholar
     

  • 50.

    Trice, T., & Landsea, C. HURDAT: Hurricane Re-Analysis Project. R package version 0.2.3. https://CRAN.R-project.org/package=HURDAT. (2019)

  • 51.

    U.S. Census Bureau. TIGER/Line Shapefiles (Machinereadable Data Files). https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html. Accessed 11 Jan 2019 (2019).

  • 52.

    Vecchi, G. A. et al. Tropical cyclone sensitivities to co 2 doubling: Roles of atmospheric resolution, synoptic variability and background climate changes. Clim. Dyn. 53(9–10), 5999–6033 (2019).


    Google Scholar
     

  • 53.

    Walsh, K. J. E. et al. Hurricanes and climate: The US CLIVAR working group on hurricanes. Bull. Am. Meteorol. Soc. 96(6), 997–1017 (2015).

    ADS 

    Google Scholar
     

  • 54.

    Walsh, K. J. E. et al. Tropical cyclones and climate change. Wiley Interdiscip. Rev. Clim. Change 7(1), 65–89 (2016).


    Google Scholar
     

  • 55.

    Wan, X. & Em Karniadakis, G. Multi-element generalized polynomial chaos for arbitrary probability measures. SIAM J. Sci. Comput. 28(3), 901–928 (2006).

    MathSciNet 
    MATH 

    Google Scholar
     

  • 56.

    Wehner, M., Reed, K. A., Stone, D., Collins, W. D. & Bacmeister, J. Resolution dependence of future tropical cyclone projections of CAM5. 1 in the US CLIVAR hurricane working group idealized configurations. J. Clim. 28(10), 3905–3925 (2015).

    ADS 

    Google Scholar
     

  • 57.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Springer, New York (2016). (ISBN 978-3-319-24277-4). https://ggplot2.tidyverse.org.

  • 58.

    Willoughby, H. E., Darling, R. W. R. & Rahn, M. E. Parametric representation of the primary hurricane vortex. Part II: A new family of sectionally continuous profiles. Mon. Weather Rev. 134(4), 1102–1120 (2006).

    ADS 

    Google Scholar
     

  • 59.

    Xiu, D. Numerical Methods for Stochastic Computations: A Spectral Method Approach (Princeton University Press, Princeton, 2010).


    Google Scholar
     

  • [ad_2]

    Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *