Hydrochemical composition and potentially toxic elements in the Kyrgyzstan portion of the transboundary Chu-Talas river basin, Central Asia


  • 1.

    Guo, H. et al. Spatial and temporal characteristics of droughts in Central Asia during 1966–2015. Sci. Total Environ. 624, 1523–1538. https://doi.org/10.1016/j.scitotenv.2017.12.120 (2018).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 2.

    Karthe, D., Chalov, S. & Borchardt, D. Water resources and their management in central Asia in the early twenty first century: status, challenges and future prospects. Environ. Earth Sci. 73, 487–499. https://doi.org/10.1007/s12665-014-3789-1 (2015).

    Article 

    Google Scholar
     

  • 3.

    Hu, W., Liu, H., Bao, A. & El-Tantawi, A. M. Influences of environmental changes on water storage variations in Central Asia. J. Geogr. Sci. 28, 985–1000. https://doi.org/10.1007/s11442-018-1517-6 (2018).

    Article 

    Google Scholar
     

  • 4.

    Crosa, G. et al. Spatial and seasonal variations in the water quality of the Amu Darya River (Central Asia). Water Res. 40, 2237–2245. https://doi.org/10.1016/j.watres.2006.04.004 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 5.

    Sorg, A., Bolch, T., Stoffel, M., Solomina, O. & Beniston, M. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Nat. Clim. Change 2, 725–731. https://doi.org/10.1038/nclimate1592 (2012).

    Article 

    Google Scholar
     

  • 6.

    Deng, H. & Chen, Y. Influences of recent climate change and human activities on water storage variations in Central Asia. J. Hydrol. 544, 46–57. https://doi.org/10.1016/j.jhydrol.2016.11.006 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 7.

    Kriegel, D. et al. Changes in glacierisation, climate and runoff in the second half of the 20th century in the Naryn basin, Central Asia. Glob. Planet. Change 110, 51–61. https://doi.org/10.1016/j.gloplacha.2013.05.014 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 8.

    Micklin, P. The Aral Sea disaster. Annu. Rev. Earth Planet. Sci. 35, 47–72. https://doi.org/10.1146/annurev.earth.35.031306.140120 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 9.

    Nezlin, N. P., Kostianoy, A. G. & Lebedev, S. A. Interannual variations of the discharge of Amu Darya and Syr Darya estimated from global atmospheric precipitation. J. Mar. Syst. 47, 67–75. https://doi.org/10.1016/j.jmarsys.2003.12.009 (2004).

    Article 

    Google Scholar
     

  • 10.

    Ismaiylov, G. K., Fedorov, V. M. & Sadati Nezhad, S. D. Assessment of possible anthropogenic changes in the runoff of the Syr Darya River on the basis of a mathematical model. Water Resour. 34, 359–371. https://doi.org/10.1134/S009780780704001X (2007).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Siegfried, T. et al. Will climate change exacerbate water stress in Central Asia?. Clim. Change 112, 881–899. https://doi.org/10.1007/s10584-011-0253-z (2012).

    ADS 
    Article 

    Google Scholar
     

  • 12.

    Savitskiy, A. G., Schlüter, M., Taryannikova, R. V., Agaltseva, N. A. & Chub, V. E. Current and future impacts of climate change on river runoff in the Central Asian river basins. In Adaptive and Integrated Water Management: Coping with Complexity and Uncertainty (eds Pahl-Wostl, C. et al.) 323–339 (Springer, Berlin, 2008).


    Google Scholar
     

  • 13.

    Bekturganov, Z. et al. Water related health problems in Central Asia—a review. Water 8, 219. https://doi.org/10.3390/w8060219 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Jensen, S., Mazhitova, Z. & Zetterström, R. Environmental pollution and child health in the Aral Sea region in Kazakhstan. Sci. Total Environ. 206, 187–193. https://doi.org/10.1016/S0048-9697(97)80009-5 (1997).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 15.

    Lind, O. et al. Environmental impact assessment of radionuclide and metal contamination at the former U site at Kadji Sai, Kyrgyzstan. J. Environ. Radioact. 123, 37–49. https://doi.org/10.1016/j.jenvrad.2012.07.010 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 16.

    Imanberdieva, N., Chukunkyzy, N., Severoğlu, Z. & Kulenbekov, Z. Ecology and environmental aspects of “Makmalzoloto” gold mining area in Kyrgyzstan. In Vegetation of Central Asia and Environs (eds Egamberdieva, D. et al.) 321–334 (Springer International Publishing, Cham, 2018).


    Google Scholar
     

  • 17.

    Passell, H. D. et al. The Navruz Project: cooperative, transboundary monitoring, data sharing and modeling of water resources in Central Asia. In Nuclear Risks in Central Asia (eds Salbu, B. et al.) 191–199 (Springer, Amsterdam, 2008).


    Google Scholar
     

  • 18.

    Barber, D. S. et al. The Navruz experiment: Cooperative monitoring for radionuclides and metals in Central Asia transboundary rivers. J. Radioanal. Nucl. Chem. 263, 213–218. https://doi.org/10.1007/s10967-005-0039-8 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Arsel, M. & Spoor, M. Water, environmental security and sustainable rural development: conflict and cooperation in Central Eurasia. (Routledge, 2009).

  • 20.

    Hartmann, J. & Moosdorf, N. The new global lithological map database GLiM: A representation of rock properties at the Earth surface. Geochem. Geophys. Geosyst. 13, Q12004. https://doi.org/10.1029/2012GC004370 (2012).

    ADS 
    Article 

    Google Scholar
     

  • 21.

    FAO. Harmonized World Soil Database (version 1.2). FAO, Rome, Italy and IIASA, Laxenburg, Austria (2012).

  • 22.

    Mamilov, N. S. Modern diversity of alien fish species in the Chu and Talas river basins. Russ. J. Biol. Invasions 2, 112. https://doi.org/10.1134/S207511171102007X (2011).

    Article 

    Google Scholar
     

  • 23.

    Xenarios, S., Shenhav, R., Abdullaev, I. & Mastellari, A. Current and Future Challenges of Water Security in Central Asia (Global Water Security, New York, 2018).


    Google Scholar
     

  • 24.

    Bernauer, T. & Siegfried, T. Climate change and international water conflict in Central Asia. J. Peace Res. 49, 227–239. https://doi.org/10.1177/0022343311425843 (2012).

    Article 

    Google Scholar
     

  • 25.

    Zhiltsov, S. S., Zonn, I. S., Grishin, O. E., Egorov, V. G. & Ruban, M. S. Transboundary rivers in Central Asia: cooperation and conflicts among countries. In Water Resources in Central Asia: International Context (eds Zhiltsov, S. S. et al.) 61–80 (Springer International Publishing, Cham, 2018).


    Google Scholar
     

  • 26.

    Shil, S. & Singh, U. K. Health risk assessment and spatial variations of dissolved heavy metals and metalloids in a tropical river basin system. Ecol. Indic. 106, 105455. https://doi.org/10.1016/j.ecolind.2019.105455 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Zhao, L. et al. Spatial-temporal distribution characteristics and health risk assessment of heavy metals in surface water of the Three Gorges Reservoir, China. Sci. Total Environ. 704, 134883. https://doi.org/10.1016/j.scitotenv.2019.134883 (2020).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 28.

    Tabari, S., Saravi, S. S. S., Bandany, G. A., Dehghan, A. & Shokrzadeh, M. Heavy metals (Zn, Pb, Cd and Cr) in fish, water and sediments sampled form Southern Caspian Sea, Iran. Toxicol. Ind. Health 26, 649–656. https://doi.org/10.1177/0748233710377777 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 29.

    Sodhi, K. K., Kumar, M., Agrawal, P. K. & Singh, D. K. Perspectives on arsenic toxicity, carcinogenicity and its systemic remediation strategies. Environ. Technol. Innov. 16, 100462. https://doi.org/10.1016/j.eti.2019.100462 (2019).

    Article 

    Google Scholar
     

  • 30.

    Plum, L. M., Rink, L. & Haase, H. The essential toxin: impact of zinc on human health. Int. J. Environ. Res. Public Health 7, 1342–1365. https://doi.org/10.3390/ijerph7041342 (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Khalid, M. & Abdollahi, M. Epigenetic modifications associated with pathophysiological effects of lead exposure. J. Environ. Sci. Health Part C 37, 235–287. https://doi.org/10.1080/10590501.2019.1640581 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Alvarez-Ortega, N., Caballero-Gallardo, K. & Olivero-Verbel, J. Toxicological effects in children exposed to lead: A cross-sectional study at the Colombian Caribbean coast. Environ. Int. 130, 104809. https://doi.org/10.1016/j.envint.2019.05.003 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 33.

    Coetzee, J. J., Bansal, N. & Chirwa, E. M. Chromium in environment, its toxic effect from chromite-mining and ferrochrome industries, and its possible bioremediation. Expo. Health 12, 51–62. https://doi.org/10.1007/s12403-018-0284-z (2020).

    Article 

    Google Scholar
     

  • 34.

    Rahman, Z. & Singh, V. P. The relative impact of toxic heavy metals (THMs)(arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview. Environ. Monit. Assess. 191, 419. https://doi.org/10.1007/s10661-019-7528-7 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 35.

    Pacheco Castro, R., Pacheco Ávila, J., Ye, M. & Cabrera Sansores, A. Groundwater quality: analysis of its temporal and spatial variability in a karst aquifer. Groundwater 56, 62–72. https://doi.org/10.1111/gwat.12546 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 36.

    Wei, H. et al. Revealing the correlations between heavy metals and water quality, with insight into the potential factors and variations through canonical correlation analysis in an upstream tributary. Ecol. Indic. 90, 485–493. https://doi.org/10.1016/j.ecolind.2018.03.037 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 37.

    Wang, X., Zhao, L., Xu, H. & Zhang, X. Spatial and seasonal characteristics of dissolved heavy metals in the surface seawater of the Yellow River Estuary, China. Mar. Pollut. Bull. 137, 465–473. https://doi.org/10.1016/j.marpolbul.2018.10.052 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 38.

    Zhang, J., Hua, P. & Krebs, P. Influences of land use and antecedent dry-weather period on pollution level and ecological risk of heavy metals in road-deposited sediment. Environ. Pollut. 228, 158–168. https://doi.org/10.1016/j.envpol.2017.05.029 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 39.

    Hong, Z. et al. Evaluation of water quality and heavy metals in wetlands along the Yellow River in Henan Province. Sustainability 12, 1300. https://doi.org/10.3390/su12041300 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 40.

    Sracek, O., Wanke, H., Ndakunda, N. N., Mihaljevič, M. & Buzek, F. Geochemistry and fluoride levels of geothermal springs in Namibia. J. Geochem. Explor. 148, 96–104. https://doi.org/10.1016/j.gexplo.2014.08.012 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 41.

    McPhillips, L. E., Creamer, A. E., Rahm, B. G. & Walter, M. T. Assessing dissolved methane patterns in central New York groundwater. J. Hydrol. Reg. Stud. 1, 57–73. https://doi.org/10.1016/j.ejrh.2014.06.002 (2014).

    Article 

    Google Scholar
     

  • 42.

    Roques, C. et al. Autotrophic denitrification supported by biotite dissolution in crystalline aquifers: (2) transient mixing and denitrification dynamic during long-term pumping. Sci. Total Environ. 619–620, 491–503. https://doi.org/10.1016/j.scitotenv.2017.11.104 (2018).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 43.

    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642. https://doi.org/10.1002/joc.3711 (2014).

    Article 

    Google Scholar
     

  • 44.

    Xiao, J., Jin, Z., Wang, J. & Zhang, F. Major ion chemistry, weathering process and water quality of natural waters in the Bosten Lake catchment in an extreme arid region, NW China. Environ. Earth Sci. 73, 3697–3708. https://doi.org/10.1007/s12665-014-3657-z (2015).

    CAS 
    Article 

    Google Scholar
     

  • 45.

    Hassen, I., Hamzaoui-Azaza, F. & Bouhlila, R. Application of multivariate statistical analysis and hydrochemical and isotopic investigations for evaluation of groundwater quality and its suitability for drinking and agriculture purposes: case of Oum Ali-Thelepte aquifer, central Tunisia. Environ. Monit. Assess. 188, 135. https://doi.org/10.1007/s10661-016-5124-7 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 46.

    Adimalla, N. Groundwater quality for drinking and irrigation purposes and potential health risks assessment: a case study from semi-arid region of South India. Expo. Health 11, 109–123. https://doi.org/10.1007/s12403-018-0288-8 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 47.

    Varol, S. & Davraz, A. Evaluation of the groundwater quality with WQI (Water Quality Index) and multivariate analysis: a case study of the Tefenni plain (Burdur/Turkey). Environ. Earth Sci. 73, 1725–1744. https://doi.org/10.1007/s12665-014-3531-z (2015).

    CAS 
    Article 

    Google Scholar
     

  • 48.

    Ndoye, S., Fontaine, C., Gaye, B. C. & Razack, M. Groundwater quality and suitability for different uses in the Saloum Area of Senegal. Water 10, 1837. https://doi.org/10.3390/w10121837 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 49.

    Zhang, B. et al. Hydrochemical characteristics and water quality assessment of surface water and groundwater in Songnen plain, Northeast China. Water Res. 46, 2737–2748. https://doi.org/10.1016/j.watres.2012.02.033 (2012).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 50.

    Kong, P., Cheng, X., Sun, R. & Chen, L. The synergic characteristics of surface water pollution and sediment pollution with heavy metals in the Haihe River Basin, Northern China. Water 10, 73. https://doi.org/10.3390/w10010073 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 51.

    Wang, Q. & Yang, Z. Industrial water pollution, water environment treatment, and health risks in China. Environ. Pollut. 218, 358–365. https://doi.org/10.1016/j.envpol.2016.07.011 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 52.

    Ma, C., Sun, L., Liu, S., Shao, M. A. & Luo, Y. Impact of climate change on the streamflow in the glacierized Chu River Basin, Central Asia. J. Arid Land 7, 501–513. https://doi.org/10.1007/s40333-015-0041-0 (2015).

    Article 

    Google Scholar
     

  • 53.

    Talib, A. M. et al. Hydrogeochemical characterization and suitability assessment of groundwater: a case study in Central Sindh, Pakistan. Int. J. Environ. Res. Public Health 16, 886. https://doi.org/10.3390/ijerph16050886 (2019).

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • 54.

    Rotiroti, M. et al. The effects of irrigation on groundwater quality and quantity in a human-modified hydro-system: the Oglio River basin, Po Plain, northern Italy. Sci. Total Environ. 672, 342–356. https://doi.org/10.1016/j.scitotenv.2019.03.427 (2019).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 55.

    Nazzal, Y. et al. A pragmatic approach to study the groundwater quality suitability for domestic and agricultural usage, Saq aquifer, northwest of Saudi Arabia. Environ. Monit. Assess. 186, 4655–4667. https://doi.org/10.1007/s10661-014-3728-3 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 56.

    Subramani, T., Elango, L. & Damodarasamy, S. R. Groundwater quality and its suitability for drinking and agricultural use in Chithar River Basin, Tamil Nadu, India. Environ. Geol. 47, 1099–1110. https://doi.org/10.1007/s00254-005-1243-0 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 57.

    Zhang, Y. et al. Hydrochemical characteristics and multivariate statistical analysis of natural water system: a case study in Kangding County, Southwestern China. Water 10, 80. https://doi.org/10.3390/w10010080 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 58.

    Rehman Qaisar, F. U. et al. Spatial variation, source identification, and quality assessment of surface water geochemical composition in the Indus River Basin, Pakistan. Environ. Sci. Pollut. Res. 25, 12749–12763. https://doi.org/10.1007/s11356-018-1519-z (2018).

    CAS 
    Article 

    Google Scholar
     

  • 59.

    Wang, Z., Guo, H., Xiu, W., Wang, J. & Shen, M. High arsenic groundwater in the Guide basin, northwestern China: distribution and genesis mechanisms. Sci. Total Environ. 640–641, 194–206. https://doi.org/10.1016/j.scitotenv.2018.05.255 (2018).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 60.

    Zhang, T., Pu, J., Li, J., Yuan, D. & Li, L. Stable isotope and aquatic geochemistry of a typical subtropical karst subterranean stream in southwest China. Carbonates Evaporites 32, 415–430. https://doi.org/10.1007/s13146-017-0356-3 (2017).

    Article 

    Google Scholar
     

  • 61.

    Weynell, M., Wiechert, U. & Zhang, C. Chemical and isotopic (O, H, C) composition of surface waters in the catchment of Lake Donggi Cona (NW China) and implications for paleoenvironmental reconstructions. Chem. Geol. 435, 92–107. https://doi.org/10.1016/j.chemgeo.2016.04.012 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 62.

    Dehbandi, R., Moore, F. & Keshavarzi, B. Geochemical sources, hydrogeochemical behavior, and health risk assessment of fluoride in an endemic fluorosis area, central Iran. Chemosphere 193, 763–776. https://doi.org/10.1016/j.chemosphere.2017.11.021 (2018).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 63.

    Li, C., Gao, X. & Wang, Y. Hydrogeochemistry of high-fluoride groundwater at Yuncheng Basin, northern China. Sci. Total Environ. 508, 155–165. https://doi.org/10.1016/j.scitotenv.2014.11.045 (2015).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 64.

    Rashid, A. et al. Fluoride prevalence in groundwater around a fluorite mining area in the flood plain of the River Swat, Pakistan. Sci. Total Environ. 635, 203–215. https://doi.org/10.1016/j.scitotenv.2018.04.064 (2018).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 65.

    Li, S. et al. Chemical balance of the Yellow River source region, the northeastern Qinghai-Tibetan Plateau: Insights about critical zone reactivity. Appl. Geochem. 90, 1–12. https://doi.org/10.1016/j.apgeochem.2017.12.016 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 66.

    Meyer, K. J., Carey, A. E. & You, C. F. Typhoon impacts on chemical weathering source provenance of a High Standing Island watershed, Taiwan. Geochim. Cosmochim. Acta 215, 404–420. https://doi.org/10.1016/j.gca.2017.07.015 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 67.

    Qu, B., Zhang, Y., Kang, S. & Sillanpää, M. Water quality in the Tibetan Plateau: major ions and trace elements in rivers of the “Water Tower of Asia”. Sci. Total Environ. 649, 571–581. https://doi.org/10.1016/j.scitotenv.2018.08.316 (2019).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 68.

    Parkhurst, D. L. & Appelo, C. Description of input and examples for PHREEQC version 3: a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Report no. 2328–7055 (US Geological Survey, 2013).

  • 69.

    Singh, U. K., Ramanathan, A. L. & Subramanian, V. Groundwater chemistry and human health risk assessment in the mining region of East Singhbhum, Jharkhand, India. Chemosphere 204, 501–513. https://doi.org/10.1016/j.chemosphere.2018.04.060 (2018).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 70.

    Wang, J., Liu, G., Liu, H. & Lam, P. K. S. Multivariate statistical evaluation of dissolved trace elements and a water quality assessment in the middle reaches of Huaihe River, Anhui, China. Sci. Total Environ. 583, 421–431. https://doi.org/10.1016/j.scitotenv.2017.01.088 (2017).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 71.

    Ma, Y., Egodawatta, P., McGree, J., Liu, A. & Goonetilleke, A. Human health risk assessment of heavy metals in urban stormwater. Sci. Total Environ. 557–558, 764–772. https://doi.org/10.1016/j.scitotenv.2016.03.067 (2016).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 72.

    Ma, L., Abuduwaili, J., Li, Y. & Liu, W. Anthropogenically disturbed potentially toxic elements in roadside topsoils of a suburban region of Bishkek, Central Asia. Soil Use Manag. 35, 283–292. https://doi.org/10.1111/sum.12470 (2019).

    Article 

    Google Scholar
     

  • 73.

    Hu, X. et al. Bioaccessibility and health risk of arsenic and heavy metals (Cd Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China. Atmos. Environ. 57, 146–152. https://doi.org/10.1016/j.atmosenv.2012.04.056 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 74.

    De Miguel, E., Iribarren, I., Chacón, E., Ordoñez, A. & Charlesworth, S. Risk-based evaluation of the exposure of children to trace elements in playgrounds in Madrid (Spain). Chemosphere 66, 505–513. https://doi.org/10.1016/j.chemosphere.2006.05.065 (2007).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 75.

    Xiao, J., Wang, L., Deng, L. & Jin, Z. Characteristics, sources, water quality and health risk assessment of trace elements in river water and well water in the Chinese Loess Plateau. Sci. Total Environ. 650, 2004–2012. https://doi.org/10.1016/j.scitotenv.2018.09.322 (2019).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 76.

    Liang, B. et al. Distribution, sources, and water quality assessment of dissolved heavy metals in the Jiulongjiang River Water, Southeast China. Int. J. Environ. Res. Public Health 15, 2752. https://doi.org/10.3390/ijerph15122752 (2018).

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • 77.

    Liu, X. et al. Human health risk assessment of heavy metals in soil-vegetable system: a multi-medium analysis. Sci. Total Environ. 463–464, 530–540. https://doi.org/10.1016/j.scitotenv.2013.06.064 (2013).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *