IL-36 receptor antagonist deficiency resulted in delayed wound healing due to excessive recruitment of immune cells


  • 1.

    Sims, J. E. et al. A new nomenclature for IL-1-family genes. Trends Immunol. 22, 536–537 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Dinarello, C. et al. IL-1 family nomenclature. Nat. Immunol. 11, 973 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    van de Veerdonk, F. L. & Netea, M. G. New insights in the immunobiology of IL-1 family members. Front. Immunol. 4, 167 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Towne, J. E. et al. Interleukin (IL)-1F6, IL-1F8, and IL-1F9 signal through IL-1Rrp2 and IL-1RAcP to activate the pathway leading to NF-kappa B and MAPKs. J. Biol. Chem. 279, 13677–13688 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Debets, R. et al. Two novel IL-1 family members, IL-1delta and IL-1 epsilon, function as an antagonist and agonist of NF-kappa B activation through the orphan IL-1 receptor-related protein 2. J. Immunol. 167, 1440–1446 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Marrakchi, S. et al. Interleukin-36-receptor antagonist deficiency and generalized pustular psoriasis. N. Engl. J. Med. 365, 620–628 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Onoufriadis, A. et al. Mutations in IL36RN/IL1F5 are associated with the severe episodic inflammatory skin disease known as generalized pustular psoriasis. Am. J. Hum. Genet. 89, 432–437 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Sugiura, K. et al. The majority of generalized pustular psoriasis without psoriasis vulgaris is caused by deficiency of interleukin-36 receptor antagonist. J. Invest. Dermatol. 133, 2514–2521 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Akiyama, M. et al. Autoinflammatory keratinization diseases. J. Allergy Clin. Immunol. 140, 1545–1547 (2017).

    PubMed 

    Google Scholar
     

  • 10.

    Akiyama, M. et al. Autoinflammatory keratinization diseases: An emerging concept encompassing various inflammatory keratinization disorders of the skin. J. Dermatol. Sci. 90, 105–111 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Shibata, A. et al. Toll-like receptor 4 antagonist TAK-242 inhibits autoinflammatory symptoms in DITRA. J. Autoimmun. 80, 28–38 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Blumberg, H. et al. Opposing activities of two novel members of the IL-1 ligand family regulate skin inflammation. J. Exp. Med. 204, 2603–2614 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Fukushima, H. et al. TAK-242 ameliorates contact dermatitis exacerbated by IL-36 receptor antagonist deficiency. Sci. Rep. 10, 734 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Sugiura, K. The genetic background of generalized pustular psoriasis: IL36RN mutations and CARD14 gain-of-function variants. J. Dermatol. Sci. 74, 187–192 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Moniaga, C. S., Watanabe, S., Honda, T., Nielsen, S. & Hara-Chikuma, M. Aquaporin-9-expressing neutrophils are required for the establishment of contact hypersensitivity. Sci. Rep. 5, 15319 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Christensen, A. D., Skov, S. & Haase, C. The role of neutrophils and G-CSF in DNFB-induced contact hypersensitivity in mice. Immun. Inflamm. Dis. 2, 21–34 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Goebeler, M. et al. Differential and sequential expression of multiple chemokines during elicitation of allergic contact hypersensitivity. Am. J. Pathol. 158, 431–440 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Jiang, Z. et al. IL-36γ Induced by the TLR3-SLUG-VDR Axis Promotes Wound Healing via REG3A. J. Invest. Dermatol. 137, 2620–2629 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Geoffrey, C. Gurtner. Wound repair and regeneration. Nature 453, 314–321 (2018).


    Google Scholar
     

  • 20.

    Ishida, Y. et al. Absence of IL-1 receptor antagonist impaired wound healing along with aberrant NF-kappa B activation and a reciprocal suppression of TGF-beta signal pathway. J. Immunol. 176, 5598–5606 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Suga, H. et al. TLR4, rather than TLR2, regulates wound healing through TGF-β and CCL5 expression. J. Dermatol. Sci. 73, 117–124 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Oshio, T. et al. Nuclear expression of IL-33 in epidermal keratinocytes promotes wound healing in mice. J. Dermatol. Sci. 85, 106–114 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Chen, L. et al. Toll-like receptor 4 has an essential role in early skin wound healing. J. Invest. Dermatol. 133, 258–267 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Taylor, K. R. et al. Hyaluronan fragments stimulate endothelial recognition of injury through TLR4. J. Biol. Chem. 279, 17079–17084 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Foell, D., Wittkowski, H., Vogl, T. & Roth, J. S100 proteins expressed in phagocytes: a novel group of damage-associated molecular pattern molecules. J. Leukoc. Biol. 81, 28–37 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Sims, G. P. et al. HMGB1 and RAGE in inflammation and cancer. Annu. Rev. Immunol. 28, 367–388 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Jiang, D. et al. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat. Med. 11, 1173–1179 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Muto, J., Sayama, K., Gallo, R. L. & Kimata, K. Emerging evidence for the essential role of hyaluronan in cutaneous biology. J. Dermatol. Sci. 94, 190–195 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Ding, L. et al. IL-36 cytokines in autoimmunity and inflammatory disease. Oncotarget 9, 2895–2901 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Ritchlin, C. et al. Patterns of cytokine production in psoriatic synovium. J. Rheumatol. 25, 1544–1552 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Chustz, R. T. et al. Regulation and function of the IL-1 family cytokine IL-1F9 in human bronchial epithelial cells. Am. J. Respir. Cell Mol. Biol. 45, 145–153 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Berglöf, E. et al. IL-1Rrp2 expression and IL-1F9 (IL-1H1) actions in brain cells. J. Neuroimmunol. 139, 36–43 (2003).

    PubMed 

    Google Scholar
     

  • 33.

    Lin, Q. et al. Impaired wound healing with defective expression of chemokines and recruitment of myeloid cell in TLR3-deficient mice. J. Immunol. 186, 3710–3717 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Iwata, Y. et al. CD19, a response regulator of B lymphocytes, regulates wound healing through hyaluronan-induced TLR4 signaling. Am. J. Pathol. 175, 649–660 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Clancy, D. M. et al. Neutrophil extracellular traps can serve as platforms for processing and activation of IL-1 family cytokines. FEBS J. 284, 1712–1725 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Afonina, I. S. et al. Granzyme B-dependent proteolysis acts as a switch to enhance the proinflammatory activity of IL-1α. Mol. Cell. 44, 265–278 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Lefrancais, E. et al. IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin G. Proc. Natl. Acad. Sci. USA 109, 1673–1678 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Afonina, I. S., Müller, C., Martin, S. J. & Beyaert, R. Proteolytic processing of interleukin-1 family cytokines: variations on a common theme. Immunity 42, 991–1004 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Foster, A. M. et al. IL-36 promotes myeloid cell infiltration, activation, and inflammatory activity in skin. J. Immunol. 192, 6053–6061 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Gabay, C. & Towne, J. E. Regulation and function of interleukin-36 cytokines in homeostasis and pathological conditions. J. Leukoc. Biol. 97, 645–652 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Arend, W. P., Malyak, M., Guthridge, C. J. & Gabay, C. Interleukin-1 receptor antagonist: role in biology. Annu. Rev. Immunol. 16, 27–55 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Johnson, G. B., Brunn, G. J. & Platt, J. L. Cutting edge: an endogenous pathway to systemic inflammatory response syndrome (SIRS)-like reactions through Toll-like receptor 4. J. Immunol. 172, 20–24 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Taylor, K. R. et al. Recognition of hyaluronan released in sterile injury involves a unique receptor complex dependent on toll-like receptor 4, CD44, and MD-2. J. Biol. Chem. 282, 18265–18275 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Aruffo, A. et al. CD44 Is the principal cell surface receptor for hyaluronate. Cell 61, 1303–1313 (1990).

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Jiang, D. et al. Hyaluronan in tissue injury and repair. Annu. Rev. Cell Dev. Biol. 23, 435–461 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Neuman, M. G., Nanau, R. M., Oruña-Sanchez, L. & Coto, G. Hyaluronic acid and wound healing. J. Pharm. Pharm. Sci. 18, 53–60 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 47.

    Chen, L. & DiPietro, L. A. Toll-like receptor function in acute wounds. Adv. Wound Care 16, 344–355 (2017).


    Google Scholar
     

  • 48.

    Benomar, Y. et al. Central resistin overexposure induces insulin resistance through Toll-like receptor 4. Diabetes 62, 102–114 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 49.

    Julian, M. W. et al. Nicotine treatment improves Toll-like receptor 2 and Toll-like receptor 9 responsiveness in active pulmonary sarcoidosis. Chest 143, 461–470 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Postlethwaite, A. E., Keski-Oja, J., Moses, H. L. & Kang, A. H. Stimulation of the chemotactic migration of human fibroblasts by transforming growth factor beta. J. Exp. Med. 165, 251–256 (1987).

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Miyazono, K., Hellman, U., Wernstedt, C. & Heldin, C. H. Latent high molecular weight complex of transforming growth factor beta 1. Purification from human platelets and structural characterization. J. Biol. Chem. 263, 6407–6415 (1988).

    CAS 
    PubMed 

    Google Scholar
     

  • 52.

    Pircher, R., Jullien, P. & Lawrence, D. A. Beta-transforming growth factor is stored in human blood platelets as a latent high molecular weight complex. Biochem. Biophys. Res. Commun. 136, 30–37 (1986).

    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    Babaioo, A. R. et al. Evaluation of the effect of IL-36γ expression on chronic periodontitis by enhancing the MAPK and TLR4 signaling pathways: a basic research. J. Dent. Res. Dent. Clin. Dent. Prosp. 12, 159–165 (2018).


    Google Scholar
     

  • 54.

    Lai, Y. et al. Commensal bacteria regulate toll-like receptor 3-dependent infammation after skin injury. Nat. Med. 15, 1377–1382 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Wong, V. W. et al. Surgical approaches to create murine models of human wound healing. J. Biomed. Biotechnol. https://doi.org/10.1155/2011/969618 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 56.

    Sasaki, H., Akamatsu, H. & Horio, T. Protective role of copper, zinc superoxide dismutase against UVB-induced injury of the human keratinocyte cell line HaCaT. J. Invest. Dermatol. 114, 502–507 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 57.

    Boukamp, P. et al. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J. Cell Biol. 106, 761–771 (1988).

    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *