Imaging how thermal capillary waves and anisotropic interfacial stiffness shape nanoparticle supracrystals


  • 1.

    Ross, M. B., Ku, J. C., Vaccarezza, V. M., Schatz, G. C. & Mirkin, C. A. Nanoscale form dictates mesoscale function in plasmonic DNA–nanoparticle superlattices. Nat. Nanotech. 10, 453–458 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 2.

    Park, D. J. et al. Plasmonic photonic crystals realized through DNA-programmable assembly. Proc. Natl Acad. Sci. USA 112, 977–981 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Lim, J., Hippalgaonkar, K., Andrews, S. C., Majumdar, A. & Yang, P. Quantifying surface roughness effects on phonon transport in silicon nanowires. Nano Lett. 12, 2475–2482 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Singh, A. V. et al. Bottom-up engineering of the surface roughness of nanostructured cubic zirconia to control cell adhesion. Nanotech. 23, 475101 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 5.

    Pileni, M. P. Self organization of inorganic nanocrystals: Unexpected chemical and physical properties. J. Colloid Interface Sci. 388, 1–8 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Givargizov, E. I., Grinberg, S. & Wester, D. W. Growth of Crystals (Springer, 2002).

  • 7.

    Barmparis, G. D., Lodziana, Z., Lopez, N. & Remediakis, I. N. Nanoparticle shapes by using Wulff constructions and first-principles calculations. Beilstein J. Nanotechnol. 6, 361–368 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Auyeung, E. et al. DNA-mediated nanoparticle crystallization into Wulff polyhedra. Nature 505, 73–77 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Marks, L. D. & Peng, L. Nanoparticle shape, thermodynamics and kinetics. J. Phys.: Condens. Matter 28, 053001 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 10.

    Prieto, J. E. & Markov, I. Stranski–Krastanov mechanism of growth and the effect of misfit sign on quantum dots nucleation. Surf. Sci. 664, 172–184 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 11.

    Heo, H. et al. Frank–van der Merwe growth versus Volmer–Weber growth in successive stacking of a few-layer Bi2Te3/Sb2Te3 by van der Waals heteroepitaxy: the critical roles of finite lattice-mismatch with seed substrates. Adv. Electron. Mater. 3, 1600375 (2017).


    Google Scholar
     

  • 12.

    Boles, M. A., Engel, M. & Talapin, D. V. Self-assembly of colloidal nanocrystals: From intricate structures to functional materials. Chem. Rev. 116, 11220–11289 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Haubold, D. et al. The formation and morphology of nanoparticle supracrystals. Adv. Func. Mater. 26, 4890–4895 (2016).

    CAS 

    Google Scholar
     

  • 14.

    Wang, M. X. et al. Epitaxy: Programmable atom equivalents versus atoms. ACS Nano 11, 180–185 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Wu, L. et al. High-temperature crystallization of nanocrystals into three-dimensional superlattices. Nature 548, 197–201 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    French, R. H. et al. Long range interactions in nanoscale science. Rev. Mod. Phys. 82, 1887–1944 (2010).

    ADS 

    Google Scholar
     

  • 17.

    Senesi, A. J. et al. Stepwise evolution of DNA-programmable nanoparticle superlattices. Angew. Chem. Int. Ed. 52, 6624–6628 (2013).

    CAS 

    Google Scholar
     

  • 18.

    Ross, F. M. Opportunities and challenges in liquid cell electron microscopy. Science 350, aaa9886 (2015).

    PubMed 

    Google Scholar
     

  • 19.

    De Yoreo, J. J. & N. A. J. M, S. Investigating materials formation with liquid-phase and cryogenic TEM. Nat. Rev. Mater. 1, 16035 (2016).

    ADS 

    Google Scholar
     

  • 20.

    Hernandez-Guzman, J. & Weeks, E. R. The equilibrium intrinsic crystal–liquid interface of colloids. Proc. Natl Acad. Sci. USA 106, 15198–15202 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Hilou, E., Du, D., Kuei, S. & Biswal, S. L. Interfacial energetics of two-dimensional colloidal clusters generated with a tunable anharmonic interaction potential. Phys. Rev. Mater. 2, 025602 (2018).

    CAS 

    Google Scholar
     

  • 22.

    Hoyt, J. J., Trautt, Z. T. & Upmanyu, M. Fluctuations in molecular dynamics simulations. Math. Comput. Simul. 80, 1382–1392 (2010).

    MathSciNet 
    MATH 

    Google Scholar
     

  • 23.

    Hoyt, J. J., Asta, M. & Karma, A. Method for computing the anisotropy of the solid–liquid interfacial free energy. Phys. Rev. Lett. 86, 5530 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Zykova-Timan, T., Rozas, R. E., Horbach, J. & Binder, K. Computer simulation studies of finite-size broadening of solid–liquid interfaces: From hard spheres to nickel. J. Phys.: Condens. Matter 21, 464102 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • 25.

    Hoyt, J. J. & Asta, M. Atomistic computation of liquid diffusivity, solid–liquid interfacial free energy, and kinetic coefficient in Au and Ag. Phys. Rev. B 65, 214106 (2002).

    ADS 

    Google Scholar
     

  • 26.

    Sun, D. Y., Asta, M., Hoyt, J. J., Mendelev, M. I. & Srolovitz, D. J. Crystal–melt interfacial free energies in metals: fcc versus bcc. Phys. Rev. B 69, 020102 (2004).

    ADS 

    Google Scholar
     

  • 27.

    Schneider, N. M. et al. Nanoscale evolution of interface morphology during electrodeposition. Nat. Commun. 8, 2174 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Ferrara, K. W., Borden, M. A. & Zhang, H. Lipid-shelled vehicles: Engineering for ultrasound molecular imaging and drug delivery. Acc. Chem. Res. 42, 881–892 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Monzel, C. & Sengupta, K. Measuring shape fluctuations in biological membranes. J. Phys. D. 49, 243002 (2016).

    ADS 

    Google Scholar
     

  • 30.

    Gokhale, S., Nagamanasa, K. H., Santhosh, V., Sood, A. K. & Ganapathy, R. Directional grain growth from anisotropic kinetic roughening of grain boundaries in sheared colloidal crystals. Proc. Natl Acad. Sci. U. S. A. 109, 20314–20319 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Ou, Z., Wang, Z., Luo, B., Luijten, E. & Chen, Q. Kinetic pathways of crystallization at the nanoscale. Nat. Mater. 19, 450–455 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Kim, J., Jones, M. R., Ou, Z. & Chen, Q. In situ electron microscopy imaging and quantitative structural modulation of nanoparticle superlattices. ACS Nano 10, 9801–9808 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Savage, J. R., Blair, D. W., Levine, A. J., Guyer, R. A. & Dinsmore, A. D. Imaging the sublimation dynamics of colloidal crystallites. Science 314, 795–798 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Tan, P., Xu, N. & Xu, L. Visualizing kinetic pathways of homogeneous nucleation in colloidal crystallization. Nat. Phys. 10, 73–79 (2013).


    Google Scholar
     

  • 35.

    Lechner, W. & Dellago, C. Accurate determination of crystal structures based on averaged local bond order parameters. J. Chem. Phys. 129, 114707 (2008).

    ADS 
    PubMed 

    Google Scholar
     

  • 36.

    ten Wolde, P. R., Ruiz-Montero, M. J. & Frenkel, D. Simulation of homogeneous crystal nucleation close to coexistence. Faraday Discuss. 104, 93–110 (1996).

    ADS 

    Google Scholar
     

  • 37.

    ten Wolde, P. R., Ruiz-Montero, M. J. & Frenkel, D. Numerical calculation of the rate of crystal nucleation in a Lennard-Jones system at moderate undercooling. J. Chem. Phys. 104, 9932–9947 (1996).

    ADS 

    Google Scholar
     

  • 38.

    Tang, X. et al. Optimal feedback controlled assembly of perfect crystals. ACS Nano 10, 6791–6798 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Family, F. Dynamic scaling and phase transitions in interface growth. Phys. A 168, 561–580 (1990).


    Google Scholar
     

  • 40.

    Nguyen, V. D., Hu, Z. B. & Schall, P. Single crystal growth and anisotropic crystal–fluid interfacial free energy in soft colloidal systems. Phys. Rev. E 84, 011607 (2011).

    ADS 

    Google Scholar
     

  • 41.

    O’Brien, M. N., Lin, H.-X., Girard, M., Olvera de la Cruz, M. & Mirkin, C. A. Programming colloidal crystal habit with anisotropic nanoparticle building blocks and DNA bonds. J. Am. Chem. Soc. 138, 14562–14565 (2016).

    PubMed 

    Google Scholar
     

  • 42.

    Nguyen, V. D., Dang, M. T., Weber, B., Hu, Z. & Schall, P. Visualizing the structural solid–liquid transition at colloidal crystal/fluid interfaces. Adv. Mater. 23, 2716–2720 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Liao, M., Xiao, X., Chui, S. T. & Han, Y. Grain-boundary roughening in colloidal crystals. Phys. Rev. X 8, 021045 (2018).

    CAS 

    Google Scholar
     

  • 44.

    Schneider, N. M. et al. Electron–water interactions and implications for liquid cell electron microscopy. J. Phys. Chem. C. 118, 22373–22382 (2014).

    CAS 

    Google Scholar
     

  • 45.

    Kim, J., Ou, Z., Jones, M. R., Song, X. & Chen, Q. Imaging the polymerization of multivalent nanoparticles in solution. Nat. Commun. 8, 761 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Aarts, D. G. A. L., Schmidt, M. & Lekkerkerker, H. N. W. Direct visual observation of thermal capillary waves. Science 304, 847–850 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 47.

    Seo, S. E., Girard, M., Olvera de la Cruz, M. & Mirkin, C. A. Non-equilibrium anisotropic colloidal single crystal growth with DNA. Nat. Commun. 9, 4558 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Ramsteiner, I. B., Weitz, D. A. & Spaepen, F. Stiffness of the crystal–liquid interface in a hard-sphere colloidal system measured from capillary fluctuations. Phys. Rev. E 82, 041603 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 49.

    Li, T. & Olvera de la Cruz, M. Surface energy fluctuation effects in single crystals of DNA-functionalized nanoparticles. J. Chem. Phys. 143, 243156 (2015).

    ADS 
    PubMed 

    Google Scholar
     

  • 50.

    Batista, C. A., Larson, R. G. & Kotov, N. A. Nonadditivity of nanoparticle interactions. Science 350, 1242477 (2015).

    PubMed 

    Google Scholar
     

  • 51.

    Trautt, Z. T., Upmanyu, M. & Karma, A. Interface mobility from interface random walk. Science 314, 632–635 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 52.

    Nagaoka, Y. et al. Superstructures generated from truncated tetrahedral quantum dots. Nature 561, 378–382 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    Efraim, Y. & Taitelbaum, H. Persistence in reactive–wetting interfaces. Phys. Rev. E 84, 050602 (2011).

    ADS 

    Google Scholar
     

  • 54.

    Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O’Brien, S. & Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 439, 55–59 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 55.

    O’Brien, M. N. et al. Exploring the zone of anisotropy and broken symmetries in DNA-mediated nanoparticle crystallization. Proc. Natl Acad. Sci. U. S. A. 113, 10485–10490 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 56.

    Lu, F. et al. Unusual packing of soft-shelled nanocubes. Sci. Adv. 5, eaaw2399 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Young, K. L. et al. Assembly of reconfigurable one-dimensional colloidal superlattices due to a synergy of fundamental nanoscale forces. Proc. Natl Acad. Sci. U. S. A. 109, 2240–2245 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    Chen, Y. & Mao, C. pH-induced reversible expansion/contraction of gold nanoparticle aggregates. Small 4, 2191–2194 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 59.

    Seo, S. E., Girard, M., de la Cruz, M. O. & Mirkin, C. A. The importance of salt-enhanced electrostatic repulsion in colloidal crystal engineering with DNA. ACS Cent. Sci. 5, 186–191 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Macfarlane, R. J. et al. Nanoparticle superlattice engineering with DNA. Science 334, 204–208 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 61.

    Kalsin, A. M. et al. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science 312, 420–424 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 62.

    Park, J. et al. 3D structure of individual nanocrystals in solution by electron microscopy. Science 349, 290–295 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 63.

    Migunov, V. et al. Rapid low dose electron tomography using a direct electron detection camera. Sci. Rep. 5, 14516 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Zaluzec, N. J. Scanning confocal electron microscopy. Microsc. Microanal. 13, 1560–1561 (2007).


    Google Scholar
     

  • 65.

    Ou, Z. et al. Reconfigurable nanoscale soft materials. Curr. Opin. Solid State Mater. Sci. 23, 41–49 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 66.

    Jones, M. R. & Mirkin, C. A. Bypassing the limitations of classical chemical purification with DNA-programmable nanoparticle recrystallization. Angew. Chem. Int. Ed. 52, 2886–2891 (2013).

    CAS 

    Google Scholar
     

  • 67.

    O’Brien, M. N., Jones, M. R., Kohlstedt, K. L., Schatz, G. C. & Mirkin, C. A. Uniform circular disks with synthetically tailorable diameters: Two-dimensional nanoparticles for plasmonics. Nano Lett. 15, 1012–1017 (2015).

    ADS 
    PubMed 

    Google Scholar
     

  • 68.

    Millstone, J. E. et al. Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. J. Am. Chem. Soc. 127, 5312–5313 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 69.

    Jones, M. R., Macfarlane, R. J., Prigodich, A. E., Patel, P. C. & Mirkin, C. A. Nanoparticle shape anisotropy dictates the collective behavior of surface-bound ligands. J. Am. Chem. Soc. 133, 18865–18869 (2011).

    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *