Inferring latent learning factors in large-scale cognitive training data


  • 1.

    Spearman, C. ‘General intelligence’ objectively determined and measured. Am. J. Psychol. 15, 201–293 (1904).

    Article 

    Google Scholar
     

  • 2.

    Carroll, J. B. et al. Human Cognitive Abilities: A Survey of Factor-Analytic Studies (Cambridge Univ. Press, 1993).

  • 3.

    Conway, A. R., Cowan, N., Bunting, M. F., Therriault, D. J. & Minkoff, S. R. A latent variable analysis of working memory capacity, short-term memory capacity, processing speed, and general fluid intelligence. Intelligence 30, 163–183 (2002).

    Article 

    Google Scholar
     

  • 4.

    Kovacs, K. & Conway, A. R. Process overlap theory: a unified account of the general factor of intelligence. Psychol. Inq. 27, 151–177 (2016).

    Article 

    Google Scholar
     

  • 5.

    Jensen, A. R. Clocking the Mind: Mental Chronometry and Individual Differences (Elsevier, 2006).

  • 6.

    Schubert, A.-L., Hagemann, D. & Frischkorn, G. T. Is general intelligence little more than the speed of higher-order processing?. J. Exp. Psychol. 146, 1498–1512 (2017).

    Article 

    Google Scholar
     

  • 7.

    Kaufman, S. B., DeYoung, C. G., Gray, J. R., Brown, J. & Mackintosh, N. Associative learning predicts intelligence above and beyond working memory and processing speed. Intelligence 37, 374–382 (2009).

    Article 

    Google Scholar
     

  • 8.

    Van Der Maas, H. L. et al. A dynamical model of general intelligence: the positive manifold of intelligence by mutualism. Psychol. Rev. 113, 842–861 (2006).

    PubMed 
    Article 

    Google Scholar
     

  • 9.

    Barbey, A. K. Network neuroscience theory of human intelligence. Trends Cogn. Sci. 22, 8–20 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • 10.

    Steyvers, M., Hawkins, G. E., Karayanidis, F. & Brown, S. D. A large-scale analysis of task switching practice effects across the lifespan. Proc. Natl Acad. Sci. USA 116, 17735–17740 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 11.

    Steyvers, M. & Benjamin, A. S. The joint contribution of participation and performance to learning functions: exploring the effects of age in large-scale data sets. Behav. Res. Methods 51, 1531–1543 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • 12.

    Donner, Y. & Hardy, J. L. Piecewise power laws in individual learning curves. Psychon. Bull. Rev. 22, 1308–1319 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 13.

    Ilin, A. & Raiko, T. Practical approaches to principal component analysis in the presence of missing values. J. Machine Learning Res. 11, 1957–2000 (2010).


    Google Scholar
     

  • 14.

    Tipping, M. E. & Bishop, C. M. Probabilistic principal component analysis. J. R. Stat. Soc. B 61, 611–622 (1999).

    Article 

    Google Scholar
     

  • 15.

    Lim, Y.J. & Teh, Y.W. Variational Bayesian approach to movie rating prediction. In Proc. International Conference on Knowledge Discovery and Data Mining 15–21 (ACM, 2007).

  • 16.

    Bell, R. M. & Koren, Y. Scalable collaborative filtering with jointly derived neighborhood interpolation weights. In Proc. Seventh IEEE International Conference on Data Mining 43–52 (IEEE Computer Society, 2007).

  • 17.

    Driver, C. C. & Voelkle, M. C. Hierarchical Bayesian continuous time dynamic modeling. Psychol. Methods 23, 774–799 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • 18.

    Kievit, R. A. et al. Developmental cognitive neuroscience using latent change score models: a tutorial and applications. Dev. Cogn. Neurosci. 33, 99–117 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • 19.

    Isiordia, M. & Ferrer, E. Curve of factors model: a latent growth modeling approach for educational research. Educ. Psychol. Meas. 78, 203–231 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • 20.

    Ram, N. & Grimm, K. J. in Handbook of Child Psychology and Developmental Science (ed. Lerner, R. M.) 1–31 (Wiley, 2015).

  • 21.

    McArdle, J. J., Ferrer-Caja, E., Hamagami, F. & Woodcock, R. W. Comparative longitudinal structural analyses of the growth and decline of multiple intellectual abilities over the life span. Dev. Psychol. 38, 115–142 (2002).

    PubMed 
    Article 

    Google Scholar
     

  • 22.

    Preacher, K. J., Wichman, A. L., MacCallum, R. C. & Briggs, N. E. Latent Growth Curve Modeling (Sage, 2008).

  • 23.

    McNeish, D., Dumas, D. G. & Grimm, K. J. Estimating new quantities from longitudinal test scores to improve forecasts of future performance. Multivariate Behav. Res. https://doi.org/10.1080/00273171.2019.1691484 (2019).

  • 24.

    Rosenberg, M. D., Casey, B. & Holmes, A. J. Prediction complements explanation in understanding the developing brain. Nat. Commun. 9, 589 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 25.

    Settles B., Brust, C., Gustafson, E., Hagiwara, M. & Madnani, N. Second language acquisition modeling. In Proc. Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications (eds Tetreault, J., Burstein, J., Kochmar, E., Leacock, C. & Yannakoudakis, H.) 56–65 (ACL, 2018).

  • 26.

    Luttinen, J. & Ilin, A. Transformations in variational Bayesian factor analysis to speed up learning. Neurocomputing 73, 1093–1102 (2010).

    Article 

    Google Scholar
     

  • 27.

    Fabrigar, L. R., Wegener, D. T., MacCallum, R. C. & Strahan, E. J. Evaluating the use of exploratory factor analysis in psychological research. Psychol. Methods 4, 272–299 (1999).

    Article 

    Google Scholar
     

  • 28.

    Abdi, H. in Encyclopedia for Research Methods for the Social Sciences (ed. Lewis-Beck, M. S. et al.) 792–795 (Sage, 2004).

  • 29.

    Widaman, K. F., Ferrer, E. & Conger, R. D. Factorial invariance within longitudinal structural equation models: measuring the same construct across time. Child Dev. Perspect. 4, 10–18 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 30.

    Salthouse, T. A. The processing-speed theory of adult age differences in cognition. Psychol. Rev. 103, 403–428 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 31.

    Jensen, A. R. Regularities in Spearman’s law of diminishing returns. Intelligence 31, 95–105 (2003).

    Article 

    Google Scholar
     

  • 32.

    Griffiths, T. L. Manifesto for a new cognitive revolution. Cognition 135, 21–23 (2015).

    PubMed 
    Article 

    Google Scholar
     

  • 33.

    Goldstone, R. L. & Lupyan, G. Discovering psychological principles by mining naturally occurring data sets. Topics Cogn. Sci. 8, 548–568 (2016).

    Article 

    Google Scholar
     

  • 34.

    Molenaar, D., Dolan, C. V., Wicherts, J. M. & van der Maas, H. L. Modeling differentiation of cognitive abilities within the higher-order factor model using moderated factor analysis. Intelligence 38, 611–624 (2010).

    Article 

    Google Scholar
     

  • 35.

    Tucker-Drob, E. M. Differentiation of cognitive abilities across the life span. Dev. Psychol. 45, 1097–1118 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 36.

    Kievit, R. A. et al. Mutualistic coupling between vocabulary and reasoning supports cognitive development during late adolescence and early adulthood. Psychol. Sci. 28, 1419–1431 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 37.

    Kievit, R. A., Hofman, A. D. & Nation, K. Mutualistic coupling between vocabulary and reasoning in young children: a replication and extension of the study by Kievit et al.(2017). Psychol. Sci. 30, 1245–1252 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 38.

    Evans, N. J., Brown, S. D., Mewhort, D. J. & Heathcote, A. Refining the law of practice. Psychol. Rev. 125, 592–605 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • 39.

    Frischkorn, G. & Schubert, A.-L. Cognitive models in intelligence research: advantages and recommendations for their application. J. Intell. 6, 34 (2018).

    PubMed Central 
    Article 

    Google Scholar
     

  • 40.

    Melby-LervÅg, M., Redick, T. S. & Hulme, C. Working memory training does not improve performance on measures of intelligence or other measures of ‘far transfer’ evidence from a meta-analytic review. Perspect. Psychol. Sci. 11, 512–534 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 41.

    Simons, D. J. et al. Do ‘brain-training’ programs work? Psychol. Sci. Public Interest 17, 103–186 (2016).

    PubMed 
    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *