Interaction dynamics and site-specific electronic recognition of DNA-nicks with 2D solid-state nanopores


  • 1.

    Lindahl, T. Instability and decay of the primary structure of DNA. Nature 362, 709–715 (1993).

    CAS 

    Google Scholar
     

  • 2.

    Lindahl, T. & Barnes, D. E. Repair of endogenous DNA damage. in. Cold Spring Harb. Symposia Quant. Biol. 65, 127–134 (2000).

    CAS 

    Google Scholar
     

  • 3.

    Hoeijmakers, J. H. J. DNA damage, aging, and cancer. N. Engl. J. Med. 361, 1475–1485 (2009).

    CAS 

    Google Scholar
     

  • 4.

    Tubbs, A. & Nussenzweig, A. Endogenous DNA damage as a source of genomic instability in cancer. Cell 168, 644–656 (2017).

    CAS 

    Google Scholar
     

  • 5.

    Rydberg, B. & Lindahl, T. Nonenzymatic methylation of DNA by the intracellular methyl group donor S-adenosyl-L-methionine is a potentially mutagenic reaction. EMBO J. 1, 211–216 (1982).

    CAS 

    Google Scholar
     

  • 6.

    Halliwell, B. & Aruoma, O. I. DNA damage by oxygen-derived species Its mechanism and measurement in mammalian systems. FEBS Lett. 281, 9–19 (1991).

    CAS 

    Google Scholar
     

  • 7.

    Klungland, A. et al. Accumulation of premutagenic DNA lesions in mice defective in removal of oxidative base damage. Proc. Natl Acad. Sci. USA 96, 13300 (1999).

    CAS 

    Google Scholar
     

  • 8.

    Ciccia, A. & Elledge, S. J. The DNA damage response: making it safe to play with knives. Mol. Cell 40, 179–204 (2010).

    CAS 

    Google Scholar
     

  • 9.

    Caldecott, K. W. Single-strand break repair and genetic disease. Nat. Rev. Genet. 9, 619–631 (2008).

    CAS 

    Google Scholar
     

  • 10.

    Sahadevan, M. et al. The relationship of single-strand breaks in DNA to breast cancer risk and to tissue concentrations of oestrogens. Biomarkers 22, 689–697 (2017).

    CAS 

    Google Scholar
     

  • 11.

    Jackson, S. P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071–1078 (2009).

    CAS 

    Google Scholar
     

  • 12.

    Mercer, J., Mahmoudi, M. & Bennett, M. DNA damage, p53, apoptosis and vascular disease. Mutat. Res. 621, 75–86 (2007).

    CAS 

    Google Scholar
     

  • 13.

    Bartek, J., Bartkova, J. & Lukas, J. DNA damage signalling guards against activated oncogenes and tumour progression. Oncogene 26, 7773–7779 (2007).

    CAS 

    Google Scholar
     

  • 14.

    De Bont, R. & van Larebeke, N. Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis 19, 169–185 (2004).


    Google Scholar
     

  • 15.

    O’Driscoll, M. Diseases associated with defective responses to DNA damage. Cold Spring Harb. Perspect. Biol. 4, a012773 (2012).

  • 16.

    Chen, J. & Stubbe, J. Bleomycins: towards better therapeutics. Nat. Rev. Cancer 5, 102–112 (2005).

    CAS 

    Google Scholar
     

  • 17.

    Wyrobek, A. J., Schmid, T. E. & Marchetti, F. Relative susceptibilities of male germ cells to genetic defects induced by cancer chemotherapies. JNCI Monogr. 2005, 31–35 (2005).


    Google Scholar
     

  • 18.

    Koster, D. A., Palle, K., Bot, E. S. M., Bjornsti, M.-A. & Dekker, N. H. Antitumour drugs impede DNA uncoiling by topoisomerase I. Nature 448, 213–217 (2007).

    CAS 

    Google Scholar
     

  • 19.

    Mehta, A. & Haber, J. E. Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harb. Perspect. Biol. 6, https://doi.org/10.1101/cshperspect.a016428 (2014).

  • 20.

    Petit, C. & Sancar, A. Nucleotide excision repair: from E. coli to man. Biochimie 81, 15–25 (1999).

    CAS 

    Google Scholar
     

  • 21.

    Moore, J. K. & Haber, J. E. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol. Cell Biol. 16, 2164–2173 (1996).

    CAS 

    Google Scholar
     

  • 22.

    Li, X. & Heyer, W.-D. Homologous recombination in DNA repair and DNA damage tolerance. Cell Res. 18, 99–113 (2008).

    CAS 

    Google Scholar
     

  • 23.

    Hu, J., Adebali, O., Adar, S. & Sancar, A. Dynamic maps of UV damage formation and repair for the human genome. Proc. Natl Acad. Sci. USA 114, 6758–6763 (2017).

    CAS 

    Google Scholar
     

  • 24.

    Aymami, J. et al. Molecular structure of nicked DNA: a substrate for DNA repair enzymes. Proc. Natl Acad. Sci. USA 87, 2526–2530 (1990).

    CAS 

    Google Scholar
     

  • 25.

    Cannan, W. J. & Pederson, D. S. Mechanisms and consequences of double-strand DNA break formation in chromatin. J. Cell. Physiol. 231, 3–14 (2016).

    CAS 

    Google Scholar
     

  • 26.

    Weinfeld, M. & Soderlind, K. J. M. Phosphorus-32-postlabeling detection of radiation-induced DNA damage: identification and estimation of thymine glycols and phosphoglycolate termini. Biochemistry 30, 1091–1097 (1991).

    CAS 

    Google Scholar
     

  • 27.

    Weinfeld, M., Mani, R. S., Abdou, I., Aceytuno, R. D. & Glover, J. N. M. Tidying up loose ends: the role of polynucleotide kinase/phosphatase in DNA strand break repair. Trends Biochem. Sci. 36, 262–271 (2011).

    CAS 

    Google Scholar
     

  • 28.

    Evans, M. D., Dizdaroglu, M. & Cooke, M. S. Oxidative DNA damage and disease: induction, repair and significance. Mutat. Res. 567, 1–61 (2004).

    CAS 

    Google Scholar
     

  • 29.

    Swenberg, J. A. et al. Endogenous versus exogenous DNA adducts: their role in carcinogenesis, epidemiology, and risk assessment. Toxicological Sci. 120, S130–S145 (2010).


    Google Scholar
     

  • 30.

    von Sonntag, C. Free-radical-induced DNA damage and its repair. (Springer, 2006).

  • 31.

    Cadet, J., Douki, T. & Ravanat, J.-L. Oxidatively generated damage to the guanine moiety of DNA: mechanistic aspects and formation in cells. Acc. Chem. Res. 41, 1075–1083 (2008).

    CAS 

    Google Scholar
     

  • 32.

    Guo, H. & Tullius, T. D. Gapped DNA is anisotropically bent. Proc. Natl Acad. Sci. USA 100, 3743–3747 (2003).

    CAS 

    Google Scholar
     

  • 33.

    Figueroa-González, G. & Pérez-Plasencia, C. Strategies for the evaluation of DNA damage and repair mechanisms in cancer. Oncol. Lett. 13, 3982–3988 (2017).


    Google Scholar
     

  • 34.

    Sloan, D. B., Broz, A. K., Sharbrough, J. & Wu, Z. Detecting rare mutations and DNA damage with sequencing-based methods. Trends Biotechnol. 36, 729–740 (2018).

    CAS 

    Google Scholar
     

  • 35.

    Akeson, M., Branton, D., Kasianowicz, J. J., Brandin, E. & Deamer, D. W. Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. Biophys. J. 77, 3227–3233 (1999).

    CAS 

    Google Scholar
     

  • 36.

    Gracheva, M. E., Aksimentiev, A. & Leburton, J.-P. Electrical signatures of single-stranded DNA with single base mutations in a nanopore capacitor. Nanotechnology 17, 3160–3165 (2006).

    CAS 

    Google Scholar
     

  • 37.

    Venkatesan, B. M. & Bashir, R. Nanopore sensors for nucleic acid analysis. Nat. Nanotechnol. 6, 615–624 (2011).

    CAS 

    Google Scholar
     

  • 38.

    Schreiber, J. et al. Error rates for nanopore discrimination among cytosine, methylcytosine, and hydroxymethylcytosine along individual DNA strands. Proc. Natl Acad. Sci. USA 110, 18910–18915 (2013).

    CAS 

    Google Scholar
     

  • 39.

    An, N., Fleming, A. M., White, H. S. & Burrows, C. J. Nanopore detection of 8-oxoguanine in the human telomere repeat sequence. ACS Nano 9, 4296–4307 (2015).

    CAS 

    Google Scholar
     

  • 40.

    Simpson, J. et al. Detecting DNA cytosine methylation using nanopore sequencing. Nat. Methods 14, 407–410 (2017).

    CAS 

    Google Scholar
     

  • 41.

    Rand, A. C. et al. Mapping DNA methylation with high-throughput nanopore sequencing. Nat. Methods 14, 411–413 (2017).

    CAS 

    Google Scholar
     

  • 42.

    Qiu, H., Sarathy, A., Schulten, K. & Leburton, J.-P. Detection and mapping of DNA methylation with 2D material nanopores. npj 2D Mater. Appl. 1, 3 (2017).


    Google Scholar
     

  • 43.

    Sarathy, A., Athreya, N. B., Varshney, L. R. & Leburton, J.-P. Classification of epigenetic biomarkers with atomically thin nanopores. J. Phys. Chem. Lett. 9, 5718–5725 (2018).

    CAS 

    Google Scholar
     

  • 44.

    Nelson, T., Zhang, B. & Prezhdo, O. V. Detection of nucleic acids with graphene nanopores: ab initio characterization of a novel sequencing device. Nano Lett. 10, 3237–3242 (2010).

    CAS 

    Google Scholar
     

  • 45.

    Girdhar, A., Sathe, C., Schulten, K. & Leburton, J.-P. Graphene quantum point contact transistor for DNA sensing. Proc. Natl Acad. Sci. 110, 16748–16753 (2013).

    CAS 

    Google Scholar
     

  • 46.

    Traversi, F. et al. Detecting the translocation of DNA through a nanopore using graphene nanoribbons. Nat. Nanotechnol. 8, 939–945 (2013).

    CAS 

    Google Scholar
     

  • 47.

    Avdoshenko, S. M. A. M. S. M. et al. Dynamic and electronic transport properties of DNA translocation through graphene nanopores. Nano Lett. 13, 1969–1976 (2013).

    CAS 

    Google Scholar
     

  • 48.

    Liu, K., Feng, J., Kis, A. & Radenovic, A. Atomically thin molybdenum disulfide nanopores with high sensitivity for dna translocation. ACS Nano 8, 2504–2511 (2014).

    CAS 

    Google Scholar
     

  • 49.

    Feng, J. et al. Identification of single nucleotides in MoS2 nanopores. Nat. Nanotechnol. 10, 1070–1076 (2015).

    CAS 

    Google Scholar
     

  • 50.

    Qiu, H., Sarathy, A., Leburton, J. P. & Schulten, K. Intrinsic stepwise translocation of stretched ssDNA in graphene nanopores. Nano Lett. 15, 8322–8330 (2015).

    CAS 

    Google Scholar
     

  • 51.

    Sarathy, A. & Leburton, J. P. Electronic conductance model in constricted MoS2 with nanopores. Appl. Phys. Lett. 108, 053701 (2016).

  • 52.

    Heerema, S. J. et al. Probing DNA translocations with inplane current signals in a graphene nanoribbon with a nanopore. ACS Nano 12, 2623–2633 (2018).

    CAS 

    Google Scholar
     

  • 53.

    Merchant, C. A. et al. DNA translocation through graphene nanopores. Nano Lett. 10, 2915–2921 (2010).

    CAS 

    Google Scholar
     

  • 54.

    Parkin, W. M. & Drndic, M. Signal and noise in FET-nanopore devices. ACS. Sensors 3, 313–319 (2018).

    CAS 

    Google Scholar
     

  • 55.

    Rosenstein, J. K., Wanunu, M., Merchant, C. A., Drndic, M. & Shepard, K. L. Integrated nanopore sensing platform with sub-microsecond temporal resolution. Nat. Methods 9, 487–492 (2012).

    CAS 

    Google Scholar
     

  • 56.

    Siwy, Z. S. & Davenport, M. Graphene opens up to DNA. Nat. Nanotechnol. 5, 697–698 (2010).

    CAS 

    Google Scholar
     

  • 57.

    Girdhar, A., Sathe, C., Schulten, K. & Leburton, J.-P. Tunable graphene quantum point contact transistor for DNA detection and characterization. Nanotechnology 26, 134005 (2015).


    Google Scholar
     

  • 58.

    Graf, M., Lihter, M., Altus, D., Marion, S. & Radenovic, A. Transverse detection of DNA using a MoS2 nanopore. Nano Lett. 19, 9075–9083 (2019).

    CAS 

    Google Scholar
     

  • 59.

    Di Ventra, M. Fast DNA sequencing by electrical means inches closer. Nanotechnology 24, 342501 (2013).


    Google Scholar
     

  • 60.

    Balan, A. et al. Improving signal-to-noise performance for DNA translocation in solid-state nanopores at MHz bandwidths. Nano Lett. 14, 7215–7220 (2014).

    CAS 

    Google Scholar
     

  • 61.

    Tabatabaei, S. K. et al. DNA punch cards for storing data on native DNA sequences via enzymatic nicking. Nat. Commun. 11, 1742 (2020).

    CAS 

    Google Scholar
     

  • 62.

    Humphrey, W., Dalke, A. & Schulten, K. VMD—visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    CAS 

    Google Scholar
     

  • 63.

    Foloppe, N. & MacKerell, A. D. Jr. All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data. J. Comput. Chem. 21, 86–104 (2000).

    CAS 

    Google Scholar
     

  • 64.

    Stewart, J. A. & Spearot, D. E. Atomistic simulations of nanoindentation on the basal plane of crystalline molybdenum disulfide (MoS2). Model. Simul. Mater. Sci. Eng. 21, 045003 (2013).


    Google Scholar
     

  • 65.

    van Dijk, M. & Bonvin, A. M. J. J. 3D-DART: a DNA structure modelling server. Nucleic Acids Res. 37, W235–W239 (2009).


    Google Scholar
     

  • 66.

    Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005).

    CAS 

    Google Scholar
     

  • 67.

    Essmann, U. et al. A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593 (1995).

    CAS 

    Google Scholar
     

  • 68.

    Aksimentiev, A., Heng, J. B., Timp, G. & Schulten, K. Microscopic kinetics of DNA translocation through synthetic nanopores. Biophys. J. 87, 2086–2097 (2004).

    CAS 

    Google Scholar
     

  • 69.

    Xiong, M., Graf, M., Athreya, N., Radenovic, A. & Leburton, J.-P. Microscopic transport analysis of single molecule detection in MoS2 nanopore membranes. Preprint at https://arxiv.org/abs/2004.10695 (2020).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *