Iterative evolution of large-bodied hypercarnivory in canids benefits species but not clades


  • 1.

    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1–11 (2014).


    Google Scholar
     

  • 2.

    Kruuk, H. The Spotted Hyena: A Study of Predation and Social Behavior (University of Chicago Press, 1972).

  • 3.

    Carbone, C., Mace, G. M., Roberts, S. C. & Macdonald, D. W. Energetic constraints on the diet of terrestrial carnivores. Nature 402, 286–288 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Carbone, C., Teacher, A. & Rowcliffe, J. M. The costs of carnivory. PLoS Biol. 5, 363–368 (2007).

    CAS 

    Google Scholar
     

  • 5.

    Van Valkenburgh, B. Deja vu: the evolution of feeding morphologies in the Carnivora. Integr. Comp. Biol. 47, 147–163 (2007).

    PubMed 

    Google Scholar
     

  • 6.

    MacArthur, R. H. & Pianka, E. R. On optimal use of a patchy environment. Am. Nat. 100, 603–609 (1966).


    Google Scholar
     

  • 7.

    Andersson, M. On optimal predator search. Theor. Popul. Biol. 19, 58–86 (1981).


    Google Scholar
     

  • 8.

    Mukherjee, S. & Heithaus, M. R. Dangerous prey and daring predators: a review. Biol. Rev. 88, 550–563 (2013).

    PubMed 

    Google Scholar
     

  • 9.

    Brown, C., Balisi, M., Shaw, C. A. & Van Valkenburgh, B. Skeletal trauma reflects hunting behaviour in extinct sabre-tooth cats and dire wolves. Nat. Ecol. Evol. 1, 1–7 (2017).


    Google Scholar
     

  • 10.

    Griffiths, D. Foraging costs and relative prey size. Am. Nat. 116, 743–752 (1980).


    Google Scholar
     

  • 11.

    Fryxell, J. M., Mosser, A., Sinclair, A. R. E. & Packer, C. Group formation stabilizes predator–prey dynamics. Nature 449, 1041–1044 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Binder, W. J., Thompson, E. N. & Van Valkenburgh, B. Temporal variation in tooth fracture among Rancho La Brea dire wolves. J. Vertebr. Paleontol. 22, 423–428 (2002).


    Google Scholar
     

  • 13.

    Binder, W. J. & Van Valkenburgh, B. A comparison of tooth wear and breakage in Rancho La Brea sabertooth cats and dire wolves across time. J. Vertebr. Paleontol. 30, 255–261 (2010).


    Google Scholar
     

  • 14.

    Van Valkenburgh, B. & Hertel, F. Tough times at La Brea: tooth breakage in large carnivores of the late Pleistocene. Science 261, 456–459 (1993).


    Google Scholar
     

  • 15.

    Holekamp, K. E., Smale, L., Berg, R. & Cooper, S. M. Hunting rates and hunting success in the spotted hyena (Crocuta crocuta). J. Zool. 242, 1–15 (1997).


    Google Scholar
     

  • 16.

    Stander, P. E. Cooperative hunting in lions: the role of the individual. Behav. Ecol. Sociobiol. 29, 445–454 (1992).


    Google Scholar
     

  • 17.

    Holliday, J. A. & Steppan, S. J. Evolution of hypercarnivory: the effect of specialization on morphological and taxonomic diversity. Paleobiology 30, 108–128 (2004).


    Google Scholar
     

  • 18.

    Milton, K. The critical role played by animal source foods in human (Homo) evolution. J. Nutr. 133, 3886–3892 (2003).


    Google Scholar
     

  • 19.

    Mealey, S. P. The natural food habits of grizzly bears in Yellowstone National Park, 1973-74. Bears Their Biol. Manag. 4, 281–292 (1980).


    Google Scholar
     

  • 20.

    McNab, B. K. Food habits, energetics, and the population biology of mammals. Am. Nat. 116, 106–124 (1980).


    Google Scholar
     

  • 21.

    Munoz-Garcia, A. & Williams, J. B. Basal metabolic rate in carnivores is associated with diet after controlling for phylogeny. Physiol. Biochem. Zool. 78, 1039–1056 (2005).

    PubMed 

    Google Scholar
     

  • 22.

    Hoekstra, H. E. & Fagan, W. F. Body size, dispersal ability, and compositional disharmony: the carnivore-dominated fauna of the Kuril Islands. Divers. Distrib. 4, 135–149 (1998).


    Google Scholar
     

  • 23.

    Van Valkenburgh, B. Iterative evolution of hypercarnivory in canids (Mammalia: Carnivora): evolutionary interactions among sympatric predators. Paleobiology 17, 340–362 (1991).


    Google Scholar
     

  • 24.

    Wang, X. Phylogenetic Systematics of the Hesperocyoninae (Carnivora, Canidae). Bulletin of the American Museum of Natural History (American Museum of Natural History, 1994).

  • 25.

    Wang, X., Tedford, R. H. & Taylor, B. E. Phylogenetic Systematics of the Borophaginae (Carnivora, Canidae). Bulletin of the American Museum of Natural History (American Museum of Natural History, 1999).

  • 26.

    Tedford, R. H., Wang, X. & Taylor, B. E. Phylogenetic Systematics of the North American fossil Caninae (Carnivora: Canidae). Bulletin of the American Museum of Natural History, Vol. 325 (American Museum of Natural History, 2009).

  • 27.

    Balisi, M., Casey, C. & Van Valkenburgh, B. Dietary specialization is linked to reduced species durations in North American fossil canids. R. Soc. Open Sci. 5, 1–15 (2018).


    Google Scholar
     

  • 28.

    Van Valkenburgh, B. Major patterns in the history of carnivorous mammals. Annu. Rev. Earth Planet. Sci. 27, 463–493 (1999).


    Google Scholar
     

  • 29.

    Figueirido, B., Martín-Serra, A., Tseng, Z. J. & Janis, C. M. Habitat changes and changing predatory habits in North American fossil canids. Nat. Commun. 6, 1–11 (2015).


    Google Scholar
     

  • 30.

    Silvestro, D., Antonelli, A. A., Salamin, N. & Quental, T. B. The role of clade competition in the diversification of North American canids. Proc. Natl Acad. Sci. USA 112, 8684–8689 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Van Valkenburgh, B., Wang, X. & Damuth, J. Cope’s rule, hypercarnivory, and extinction in North American canids. Science 306, 101–104 (2004).

    PubMed 

    Google Scholar
     

  • 32.

    Rasmussen, G. S. A., Gusset, M., Courchamp, F. & Macdonald, D. W. Achilles’ heel of sociality revealed by energetic poverty trap in cursorial hunters. Am. Nat. 172, 508–518 (2008).

    PubMed 

    Google Scholar
     

  • 33.

    Raia, P. et al. Progress to extinction: increased specialisation causes the demise of animal clades. Sci. Rep. 6, 30965 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Van Valkenburgh, B. Extinction and replacement among predatory mammals in the North American late Eocene and Oligocene: tracking a paleoguild over 12 million years. Hist. Biol. 8, 129–150 (1994).

  • 35.

    Vermeij, G. J. Biological versatility and earth history. Proc. Natl Acad. Sci. U. S. A. 70, 1936–1938 (1973).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Piras, P. et al. Evolution of the sabertooth mandible: a deadly ecomorphological specialization. Palaeogeogr. Palaeoclimatol. Palaeoecol. 0–1, https://doi.org/10.1016/j.palaeo.2018.01.034 (2018).

  • 37.

    Palmqvist, P., Martinez-Navarro, B. & Arribas, A. Prey selection by terrestrial carnivores in a lower Pleistocene paleocommunity. Paleobiology 22, 514–534 (1996).


    Google Scholar
     

  • 38.

    Stock, C. Rancho La Brea: A Record of Pleistocene life in California (Natural History Museum of Los Angeles County, 1992).

  • 39.

    Van Valkenburgh, B., Sacco, T. & Wang, X. Pack hunting in Miocene borophagine dogs: evidence from craniodental morphology and body size. in Bulletin of the American Museum of Natural History 147–162, (American Museum of Natural History, 2003). https://doi.org/10.1206/0003-0090(2003)279<0147:C>2.0.CO;2.

  • 40.

    Van Valkenburgh, B. & Sacco, T. Sexual dimorphism, social behavior, and intrasexual competition in large Pleistocene carnivorans. J. Vertebr. Paleontol. 22, 164–169 (2002).


    Google Scholar
     

  • 41.

    Carbone, C. et al. Parallels between playbacks and Pleistocene tar seeps suggest sociality in an extinct sabretooth cat, Smilodon. Biol. Lett. 5, 81–85 (2009).

    PubMed 

    Google Scholar
     

  • 42.

    Van Valkenburgh, B. et al. Sociality in Rancho La Brea Smilodon: arguments favour ‘evidence’ over ‘coincidence’. Biol. Lett. 5, 563–564 (2009).

    PubMed Central 

    Google Scholar
     

  • 43.

    Creel, S. & Creel, N. M. The African Wild Dog: Behaviour, Ecology and Conservation (Princeton University Press, 2002).

  • 44.

    Sinclair, A. R. E. & Krebs, C. J. Complex numerical responses to top-down and bottom-up processes in vertebrate populations. Philos. Trans. R. Soc. B Biol. Sci. 357, 1221–1231 (2002).

    CAS 

    Google Scholar
     

  • 45.

    Rosenzweig, M. L. Net primary productivity of terrestrial communities: prediction from climatological data. Am. Nat. 102, 67–74 (1968).


    Google Scholar
     

  • 46.

    Barnosky, A. D. Distinguishing the effects of the Red Queen and Court Jester on Miocene mammal evolution in the northern Rocky Mountains. J. Vertebr. Paleontol. 21, 172–185 (2001).


    Google Scholar
     

  • 47.

    Smiley, T. M., Hyland, E. G., Cotton, J. M. & Reynolds, R. E. Evidence of early C4 grasses, habitat heterogeneity, and faunal response during the Miocene Climatic Optimum in the Mojave Region. Palaeogeogr. Palaeoclimatol. Palaeoecol. 490, 415–430 (2018).


    Google Scholar
     

  • 48.

    Kohn, M. J. & Fremd, T. J. Miocene tectonics and climate forcing of biodiversity, western United States. Geology 36, 783–786 (2008).

    CAS 

    Google Scholar
     

  • 49.

    Finarelli, J. A. & Badgley, C. Diversity dynamics of Miocene mammals in relation to the history of tectonism and climate. Proc. R. Soc. B 277, 2721–2726 (2010).

    PubMed 

    Google Scholar
     

  • 50.

    Payne, J. L., Bush, A. M., Heim, N. A., Knope, M. L. & McCauley, D. J. Ecological selectivity of the emerging mass extinction in the oceans. Science 353, 1284–1286 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Smith, F. A., Smith, R. E. E., Lyons, S. K. & Payne, J. L. Body size downgrading of mammals over the late Quaternary. Science 313, 310–313 (2018).


    Google Scholar
     

  • 52.

    Faurby, S., Silvestro, D., Werdelin, L. & Antonelli, A. A. Brain expansion in early hominins predicts carnivore extinctions in East Africa. Ecol. Lett. https://doi.org/10.1111/ele.13451 (2020).

  • 53.

    Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 54.

    Wang, X. New material of Osbornodon from the Early Hemingfordian of Nebraska and Florida. in Vertebrate Fossils and Their Context: Contributions in Honor of Richard H.Tedford (ed. Flynn, L. J.) 163–176 (American Museum of Natural History, 2003).

  • 55.

    Van Valkenburgh, B. Skeletal and dental predictors of body mass in carnivores. in Body Size in Mammalian Paleobiology: Estimation and Biological Implications (eds Damuth, J. & MacFadden, B. J.) 181–206 (Cambridge University Press, 1990).

  • 56.

    Wang, X. et al. First bone-cracking dog coprolites provide new insight into bone consumption in Borophagus and their unique ecological niche. eLife 7, 1–28 (2018).


    Google Scholar
     

  • 57.

    Van Valkenburgh, B. & Koepfli, K. P. Cranial and dental adaptations to predation in canids. Mamm. Predat. Ser. Symp. Zool. Soc. 65, 15–37 (1993).


    Google Scholar
     

  • 58.

    Slater, G. J. Iterative adaptive radiations of fossil canids show no evidence for diversity-dependent trait evolution. Proc. Natl Acad. Sci. USA 112, 4897–4902 (2015).

  • 59.

    Carrasco, M. A., Kraatz, B. P., Davis, E. B. & Barnosky, A. D. Miocene Mammal Mapping Project (MIOMAP). http://www.ucmp.berkeley.edu/miomap/ (University of California Museum of Paleontology, 2005).

  • 60.

    Graham, R. W. & Lundelius, E. L. Jr. FAUNMAP II: New data for North America with a temporal extension for the Blancan, Irvingtonian and early Rancholabrean. FAUNMAP II Database http://ucmp.berkeley.edu/faunmap/ (2010).

  • 61.

    Bambach, R. K., Knoll, A. H. & Wang, S. C. Origination, extinction, and mass depletions of marine diversity. Paleobiology 30, 522–542 (2004).


    Google Scholar
     

  • 62.

    Woodburne, M. O. (ed.) Late Cretaceous and Cenozoic Mammals of North America: Biostratigraphy and Geochronology. (Columbia University Press, 2004). https://doi.org/10.7312/wood13040.

  • 63.

    Ellis, A. R., Burchett, W. W., Harrar, S. W. & Bathke, A. C. Nonparametric inference for multivariate data: the R package npmv. J. Stat. Softw. 76, 1–18 (2017).

  • 64.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).


    Google Scholar
     

  • 65.

    McDonald, J. H. Handbook of Biological Statistics (Sparky House Publishing, 2014).

  • 66.

    Hunt, G. paleoTS: Analyze Paleontological Time-Series. R package version 0.5.2. https://CRAN.R-project.org/package=paleoTS (2019).

  • 67.

    Mazerolle, M. J. & Linden, D. AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c). R package version 2.3-0. https://cran.r-project.org/package=AICcmodavg (2019).

  • 68.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org (2019).

  • 69.

    Silvestro, D., Salamin, N. & Schnitzler, J. PyRate: a new program to estimate speciation and extinction rates from incomplete fossil data. Methods Ecol. Evol. 5, 1126–1131 (2014).


    Google Scholar
     

  • 70.

    Rambaut, A. et al. Tracer. http://beast.community/tracer (2018).

  • 71.

    Zachos, J. C., Dickens, G. R. & Zeebe, R. E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–283 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 72.

    Balisi, M. & Van Valkenburgh, B. Iterative evolution of large-bodied hypercarnivory in canids benefits species but not clades. Dryad, https://doi.org/10.6071/M3M08P (2020).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *