Large influence of dust on the Precambrian climate


  • 1.

    Puttick, M. N. et al. The interrelationships of land plants and the nature of the ancestral embryophyte. Curr. Biol. 28, 733–745 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Morris, J. L. et al. The timescale of early land plant evolution. Proc. Natl Acad. Sci. 115, E2274–E2283 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Jickells, T. et al. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308, 67–71 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Winston, D. Sheetflood sedimentology of the mesoproterozoic revett formation, belt supergroup, northwestern Montana, USA. In Belt Basin: Window to Mesoproterozoic Earth, Vol. 522 (eds MacLean J. S. & Sears J. W.) 1–56 (Geological Society of America Special Paper, 2016).

  • 5.

    Overpeck, J., Rind, D., Lacis, A. & Healy, R. Possible role of dust-induced regional warming in abrupt climate change during the last glacial period. Nature 384, 447–449 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • 6.

    Ge, J. et al. Dust aerosol optical properties retrieval and radiative forcing over northwestern China during the 2008 China‐US joint field experiment. J. Geophys. Res.: Atmos. 115, D00K12 (2010).


    Google Scholar
     

  • 7.

    Kushta, J. et al. Impact of natural aerosols on atmospheric radiation and consequent feedbacks with the meteorological and photochemical state of the atmosphere. J. Geophys. Res.: Atmos. 119, 1463–1491 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 8.

    Kaufman, Y. J., Koren, I., Remer, L. A., Rosenfeld, D. & Rudich, Y. The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean. Proc. Natl Acad. Sci. 102, 11207–11212 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Andreae, M. & Rosenfeld, D. Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth-Sci. Rev. 89, 13–41 (2008).

    ADS 

    Google Scholar
     

  • 10.

    Zhang, L., Li, Q., Gu, Y., Liou, K. & Meland, B. Dust vertical profile impact on global radiative forcing estimation using a coupled chemical-transport-radiative-transfer model. Atmos. Chem. Phys. 13, 7097–7114 (2013).

    ADS 

    Google Scholar
     

  • 11.

    Albani, S. et al. Improved dust representation in the Community Atmosphere Model. J. Adv. Modeling Earth Syst. 6, 541–570 (2014).

    ADS 

    Google Scholar
     

  • 12.

    Choobari, O. A., Zawar-Reza, P. & Sturman, A. The global distribution of mineral dust and its impacts on the climate system: a review. Atmos. Res. 138, 152–165 (2014).

    CAS 

    Google Scholar
     

  • 13.

    Takemura, T. et al. A simulation of the global distribution and radiative forcing of soil dust aerosols at the Last Glacial Maximum. Atmos. Chem. Phys. 9, 3061–3073 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • 14.

    Penner, J. E. et al. Climate change 2001: the scientific basis. In Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. 289–348 (Cambridge University Press, 2001).

  • 15.

    Pausata, F. S., Messori, G. & Zhang, Q. Impacts of dust reduction on the northward expansion of the African monsoon during the Green Sahara period. Earth Planet. Sci. Lett. 434, 298–307 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 16.

    Pausata, F. S. et al. Greening of the Sahara suppressed ENSO activity during the mid-Holocene. Nat. Commun. 8, 16020 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Liu, Y. et al. A possible role of dust in resolving the Holocene temperature conundrum. Sci. Rep. 8, 4434 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Poulsen, C. J., Pierrehumbert, R. T. & Jacob, R. L. Impact of ocean dynamics on the simulation of the Neoproterozoic “snowball Earth”. Geophys. Res. Lett. 28, 1575–1578 (2001).

    ADS 

    Google Scholar
     

  • 19.

    Pierrehumbert, R. T. Climate dynamics of a hard snowball Earth. J. Geophys. Res.: Atmos. 110, D01111 (2005).

    ADS 

    Google Scholar
     

  • 20.

    Yang, J., Peltier, W. R. & Hu, Y. The initiation of modern “soft snowball” and “hard snowball” climates in CCSM3. Part I: the influences of solar luminosity, CO2 concentration, and the sea ice/snow albedo parameterization. J. Clim. 25, 2711–2736 (2012).

    ADS 

    Google Scholar
     

  • 21.

    Liu, Y., Peltier, W., Yang, J. & Vettoretti, G. The initiation of Neoproterozoic” snowball” climates in CCSM3: the influence of paleocontinental configuration. Climate 9, 2555–2577 (2013).


    Google Scholar
     

  • 22.

    Hoffman, P. F., Kaufman, A. J., Halverson, G. P. & Schrag, D. P. A Neoproterozoic snowball earth. Science 281, 1342–1346 (1998).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Abbot, D. S. & Halevy, I. Dust aerosol important for snowball earth deglaciation. J. Clim. 23, 4121–4132 (2010).

    ADS 

    Google Scholar
     

  • 24.

    Li, D. W. & Pierrehumbert, R. T. Sea glacier flow and dust transport on Snowball Earth. Geophys. Res. Lett. 38, L17501 (2011).

    ADS 

    Google Scholar
     

  • 25.

    Madeleine, J. B., Forget, F., Millour, E., Montabone, L. & Wolff, M. J. Revisiting the radiative impact of dust on Mars using the LMD Global Climate Model. J. Geophys. Res-Planet 116, E11010 (2011).

    ADS 

    Google Scholar
     

  • 26.

    Zender, C. S., Newman, D. & Torres, O. Spatial heterogeneity in aeolian erodibility: uniform, topographic, geomorphic, and hydrologic hypotheses. J. Geophys. Res.: Atmos. 108, 4543 (2003).

    ADS 

    Google Scholar
     

  • 27.

    Li, Z.-X. et al. Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Res. 160, 179–210 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • 28.

    McGee, D., deMenocal, P. B., Winckler, G., Stuut, J. B. W. & Bradtmiller, L. I. The magnitude, timing and abruptness of changes in North African dust deposition over the last 20,000 yr. Earth Planet Sc. Lett. 371, 163–176 (2013).

    ADS 

    Google Scholar
     

  • 29.

    Lageson, D. R. & Bowen, D. Aeolian siliciclastic depositional hypothesis for Precambrian Earth and Noachian Mars. Geol. Soc. Am. 50, 3 (2018).


    Google Scholar
     

  • 30.

    Farrell, B. F. & Abbot, D. S. A mechanism for dust-induced destabilization of glacial climates. Clim 8, 2061–2067 (2012).

    ADS 

    Google Scholar
     

  • 31.

    Castillo, C. K. G., Levis, S. & Thornton, P. Evaluation of the new CNDV option of the community land model: effects of dynamic vegetation and interactive nitrogen on CLM4 means and variability. J. Clim. 25, 3702–3714 (2012).

    ADS 

    Google Scholar
     

  • 32.

    Li, Z. X. et al. Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Res. 160, 179–210 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • 33.

    Liu, Y., Peltier, W. R., Yang, J. & Vettoretti, G. The initiation of Neoproterozoic “snowball” climates in CCSM3: the influence of paleocontinental configuration. Clim 9, 2555–2577 (2013).

    ADS 

    Google Scholar
     

  • 34.

    Pierrehumbert, R. T., Abbot, D. S., Voigt, A. & Koll, D. Climate of the Neoproterozoic. Annu Rev. Earth Pl Sc. 39, 417–460 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • 35.

    Bindeman, I. N. et al. Rapid emergence of subaerial landmasses and onset of a modern hydrologic cycle 2.5 billion years ago. Nature 557, 545–548 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Johnson, B. W. & Wing, B. A. Limited Archaean continental emergence reflected in an early Archaean O-18-enriched ocean. Nat. Geosci. 13, 243–248 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 37.

    Belnap, J. & Lange, O. L. In Biological soil crusts: structure, function, and management. 471–479 (Springer, 2001).

  • 38.

    Brookfield, M. & Ahlbrandt, T. Eolian sediments and processes. Elsevier Sci. Publ., Dev. Sedimentol. 38, 660 (1983).


    Google Scholar
     

  • 39.

    Albani, S. et al. Paleodust variability since the Last Glacial Maximum and implications for iron inputs to the ocean. Geophys. Res. Lett. 43, 3944–3954 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 40.

    Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Hurrell, J. W. et al. The community earth system model: a framework for collaborative research. Bull. Am. Meteorological Soc. 94, 1339–1360 (2013).

    ADS 

    Google Scholar
     

  • 42.

    Neale, R. B. et al. Description of the NCAR community atmosphere model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+ STR, National Center for Atmospheric Research (NCAR) 1, 1–12 (2010).


    Google Scholar
     

  • 43.

    Liu, X. et al. Toward a minimal representation of aerosols in climate models: description and evaluation in the community atmosphere model CAM5. Geoscientific Model Dev. 5, 709–739 (2012).

    ADS 

    Google Scholar
     

  • 44.

    Neale, R. B. et al. Description of the NCAR community atmosphere model (CAM 4.0). NCAR Technical Report, NCAR/TN-485+STR, National Center for Atmospheric Research (NCAR) (2010).

  • 45.

    Oleson, K. W. et al. Technical description of version 4.0 of the Community Land Model (CLM). NCAR Techical Note, TN-4781STR, National Center for Atmospheric Research (NCAR) (2010).

  • 46.

    Lawrence, D. M. et al. Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv Modeling Earth Syst. 3, M03001 (2011).

    ADS 

    Google Scholar
     

  • 47.

    Smith, R. et al. The parallel ocean program (POP) reference manual: ocean component of the community climate system model (CCSM) and community earth system model (CESM). Rep. LAUR-01853 141, 1–140 (2010).


    Google Scholar
     

  • 48.

    Hunke, E. C., Lipscomb, W. H., Turner, A. K., Jeffery, N. & Elliott, S. CICE: the Los Alamos Sea Ice Model Documentation and Software User’s Manual Version 4.1. Techical Report LA-CC-06-012. Los Alamos National Laboratory. Available at https://csdms.colorado.edu/w/images/CICE_documentation_and_software_user’s_manual.pdf (2010).

  • 49.

    Mahowald, N. M. et al. Change in atmospheric mineral aerosols in response to climate: last glacial period, preindustrial, modern, and doubled carbon dioxide climates. J. Geophys. Res.: Atmos. 111, D10202 (2006).

    ADS 

    Google Scholar
     

  • 50.

    Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S. E. & Gill, T. E. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophysics. 40, 2-1-2-31 (2002).


    Google Scholar
     

  • 51.

    Ginoux, P. et al. Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res.: Atmos. 106, 20255–20273 (2001).

    ADS 

    Google Scholar
     

  • 52.

    Tegen, I. et al. Impact of vegetation and preferential source areas on global dust aerosol: results from a model study. J. Geophys. Res.: Atmos. 107, AAC 14-11–AAC 14-27 (2002).


    Google Scholar
     

  • 53.

    Zender, C. S., Bian, H. & Newman, D. Mineral Dust Entrainment and Deposition (DEAD) model: description and 1990s dust climatology. J. Geophys. Res.: Atmos. 108, 4416 (2003).

    ADS 

    Google Scholar
     

  • 54.

    Schulz, M., Balkanski, Y. J., Guelle, W. & Dulac, F. Role of aerosol size distribution and source location in a three‐dimensional simulation of a Saharan dust episode tested against satellite‐derived optical thickness. J. Geophys. Res.: Atmos. 103, 10579–10592 (1998).

    ADS 
    CAS 

    Google Scholar
     

  • 55.

    Tie, X. et al. Assessment of the global impact of aerosols on tropospheric oxidants. J. Geophys. Res.: Atmos. 110, D03204 (2005).

    ADS 

    Google Scholar
     

  • 56.

    Scanza, R. et al. Modeling dust as component minerals in the Community Atmosphere Model: development of framework and impact on radiative forcing. Atmos. Chem. Phys. 15, 537–561 (2015).

    ADS 

    Google Scholar
     

  • 57.

    Sagoo, N. & Storelvmo, T. Testing the sensitivity of past climates to the indirect effects of dust. Geophys. Res. Lett. 44, 5807–5817 (2017).

    ADS 

    Google Scholar
     

  • 58.

    Ghan, S. J. et al. Toward a minimal representation of aerosols in climate models: comparative decomposition of aerosol direct, semidirect, and indirect radiative forcing. J. Clim. 25, 6461–6476 (2012).

    ADS 

    Google Scholar
     

  • 59.

    Warren, S. G., Brandt, R. E., Grenfell, T. C. & McKay, C. P. Snowball Earth: ice thickness on the tropical ocean. J. Geophys. Res.: Oceans 107, 31-31-31-18 (2002).


    Google Scholar
     

  • 60.

    Oleson, K. W. et al. Technical description of version 4.0 of the Community Land Model (CLM). National Center for Atmospheric Research (NCAR) (2010).

  • 61.

    Liu, Y. G., Peltier, W. R., Yang, J., Vettoretti, G. & Wang, Y. W. Strong effects of tropical ice-sheet coverage and thickness on the hard snowball Earth bifurcation point. Clim. Dynam. 48, 3459–3474 (2017).

    ADS 

    Google Scholar
     

  • 62.

    Bahcall, J. N., Pinsonneault, M. & Basu, S. Solar models: current epoch and time dependences, neutrinos, and helioseismological properties. Astrophys. J. 555, 990 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • 63.

    Yoshioka, M. et al. Impact of desert dust radiative forcing on Sahel precipitation: relative importance of dust compared to sea surface temperature variations, vegetation changes, and greenhouse gas warming. J. Clim. 20, 1445–1467 (2007).

    ADS 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *