Lidar observations of large-amplitude mountain waves in the stratosphere above Tierra del Fuego, Argentina


  • 1.

    Ern, M. et al. GRACILE: A comprehensive climatology of atmospheric gravity wave parameters based on satellite limb soundings. Earth Syst. Sci. Data 10, 857–892. https://doi.org/10.5194/essd-10-857-2018 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 2.

    Fritts, D. C. & Alexander, M. J. Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys.https://doi.org/10.1029/2001RG000106 (2003).

    Article 

    Google Scholar
     

  • 3.

    Smith, S., Baumgardner, J. & Mendillo, M. Evidence of mesospheric gravity-waves generated by orographic forcing in the troposphere. Geophys. Res. Lett.https://doi.org/10.1029/2008GL036936 (2009).

    Article 

    Google Scholar
     

  • 4.

    Kaifler, B. et al. Influences of source conditions on mountain wave penetration into the stratosphere and mesosphere. Geophys. Res. Lett. 42, 9488–9494. https://doi.org/10.1002/2015GL066465 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 5.

    Preusse, P. et al. Space-based measurements of stratospheric mountain waves by CRISTA 1. Sensitivity, analysis method, and a case study. J. Geophys. Res. Atmos. 107(D23), 8178. https://doi.org/10.1029/2001JD000699 (2002).

    ADS 
    Article 

    Google Scholar
     

  • 6.

    Ern, M., Preusse, P., Alexander, M. J. & Warner, C. D. Absolute values of gravity wave momentum flux derived from satellite data. J. Geophys. Res. Atmos.https://doi.org/10.1029/2004JD004752 (2004).

    Article 

    Google Scholar
     

  • 7.

    Baumgaertner, A. J. G. & McDonald, A. J. A gravity wave climatology for Antarctica compiled from Challenging Minisatellite Payload/Global Positioning System (CHAMP/GPS) radio occultations. J. Geophys. Res. Atmos.https://doi.org/10.1029/2006JD007504 (2007).

    Article 

    Google Scholar
     

  • 8.

    Hertzog, A., Boccara, G., Vincent, R. A., Vial, F. & Cocquerez, P. Estimation of gravity wave momentum flux and phase speeds from quasi-lagrangian stratospheric balloon flights. Part ii. Results from the Vorcore campaign in Antarctica. J. Atmos. Sci. 65, 3056–3070. https://doi.org/10.1175/2008JAS2710.1 (2008).

    ADS 
    Article 

    Google Scholar
     

  • 9.

    Alexander, P., Luna, D., Llamedo, P. & de la Torre, A. A gravity waves study close to the Andes mountains in Patagonia and Antarctica with GPS radio occultation observations. Ann. Geophys. 28, 587–595. https://doi.org/10.5194/angeo-28-587-2010 (2010).

    ADS 
    Article 

    Google Scholar
     

  • 10.

    Ern, M. et al. Implications for atmospheric dynamics derived from global observations of gravity wave momentum flux in stratosphere and mesosphere. J. Geophys. Res. Atmos.https://doi.org/10.1029/2011JD015821 (2011).

    Article 

    Google Scholar
     

  • 11.

    Faber, A., Llamedo, P., Schmidt, T., de la Torre, A. & Wickert, J. On the determination of gravity wave momentum flux from GPS radio occultation data. Atmos. Meas. Tech. 6, 3169–3180. https://doi.org/10.5194/amt-6-3169-2013 (2013).

    Article 

    Google Scholar
     

  • 12.

    Alexander, M. J. Global and seasonal variations in three-dimensional gravity wave momentum flux from satellite limb-sounding temperatures. Geophys. Res. Lett. 42, 6860–6867. https://doi.org/10.1002/2015GL065234 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 13.

    Hindley, N. P., Wright, C. J., Smith, N. D. & Mitchell, N. J. The southern stratospheric gravity wave hot spot: Individual waves and their momentum fluxes measured by COSMIC GPS-RO. Atmos. Chem. Phys. 15, 7797–7818. https://doi.org/10.5194/acp-15-7797-2015 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 14.

    Wright, C. J., Hindley, N. P., Hoffmann, L., Alexander, M. J. & Mitchell, N. J. Exploring gravity wave characteristics in 3-D using a novel S-transform technique: AIRS/Aqua measurements over the Southern Andes and Drake Passage. Atmos. Chem. Phys. 17, 8553–8575. https://doi.org/10.5194/acp-17-8553-2017 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 15.

    Meyer, C. I., Ern, M., Hoffmann, L., Trinh, Q. T. & Alexander, M. J. Intercomparison of AIRS and HIRDLS stratospheric gravity wave observations. Atmos. Meas. Tech. 11, 215–232. https://doi.org/10.5194/amt-11-215-2018 (2018).

    Article 

    Google Scholar
     

  • 16.

    Hindley, N. P. et al. Gravity waves in the winter stratosphere over the Southern Ocean: High-resolution satellite observations and 3-D spectral analysis. Atmos. Chem. Phys. 19, 15377–15414. https://doi.org/10.5194/acp-19-15377-2019 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 17.

    Kim, Y., Eckermann, S. D. & Chun, H. An overview of the past, present and future of gravity-wave drag parametrization for numerical climate and weather prediction models. Atmos. Ocean 41, 65–98. https://doi.org/10.3137/ao.410105 (2003).

    Article 

    Google Scholar
     

  • 18.

    Alexander, M. J. et al. Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Q. J. R. Meteorol. Soc. 136, 1103–1124. https://doi.org/10.1002/qj.637 (2010).

    Article 

    Google Scholar
     

  • 19.

    Geller, M. A. et al. A comparison between gravity wave momentum fluxes in observations and climate models. J. Clim. 26, 6383–6405. https://doi.org/10.1175/JCLI-D-12-00545.1 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 20.

    Sandu, I. et al. Impacts of orography on large-scale atmospheric circulation. NPJ Clim. Atmos. Sci. 2, 10 (2019).

    Article 

    Google Scholar
     

  • 21.

    Yamashita, C. et al. Stratospheric gravity wave characteristics and seasonal variations observed by lidar at the South Pole and Rothera, Antarctica. J. Geophys. Res. Atmos.https://doi.org/10.1029/2008JD011472 (2009).

    Article 

    Google Scholar
     

  • 22.

    Alexander, S. P., Klekociuk, A. R. & Murphy, D. J. Rayleigh lidar observations of gravity wave activity in the winter upper stratosphere and lower mesosphere above Davis, Antarctica ((69^circ text{ S }), (78^circ text{ E })). J. Geophys. Res. Atmos.https://doi.org/10.1029/2010JD015164 (2011).

    Article 

    Google Scholar
     

  • 23.

    Kaifler, B., Lübken, F.-J., Höffner, J., Morris, R. J. & Viehl, T. P. Lidar observations of gravity wave activity in the middle atmosphere over Davis ((69^circ text{ S }), (78^circ text{ E })), Antarctica. J. Geophys. Res. Atmos. 120, 4506–4521. https://doi.org/10.1002/2014JD022879 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 24.

    Kogure, M. et al. Effects of horizontal wind structure on a gravity wave event in the middle atmosphere over Syowa ((69^circ text{ S }), (40^circ text{ E })), the Antarctic. Geophys. Res. Lett. 45, 5151–5157. https://doi.org/10.1029/2018GL078264 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 25.

    Chu, X. et al. Lidar observations of stratospheric gravity waves from 2011 to 2015 at McMurdo ((77.84^circ text{ S }), (166.69^circ text{ E })), Antarctica: 2. Potential energy densities, lognormal distributions, and seasonal variations. J. Geophys. Res. Atmos. 123, 7910–7934. https://doi.org/10.1029/2017JD027386 (2018).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Baumgarten, K., Gerding, M., Baumgarten, G. & Lübken, F.-J. Temporal variability of tidal and gravity waves during a record long 10-day continuous lidar sounding. Atmos. Chem. Phys. 18, 371–384. https://doi.org/10.5194/acp-18-371-2018 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 27.

    Llamedo, P. et al. 11 years of Rayleigh lidar observations of gravity wave activity above the southern tip of South America. J. Geophys. Res. Atmos. 124, 451–467. https://doi.org/10.1029/2018JD028673 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 28.

    Hertzog, A., Alexander, M. J. & Plougonven, R. On the intermittency of gravity wave momentum flux in the stratosphere. J. Atmos. Sci. 69, 3433–3448. https://doi.org/10.1175/JAS-D-12-09.1 (2012).

    ADS 
    Article 

    Google Scholar
     

  • 29.

    Eckermann, S. D. & Preusse, P. Global measurements of stratospheric mountain waves from space. Science 286, 1534–1537. https://doi.org/10.1126/science.286.5444.1534 (1999).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 30.

    Alexander, M. J., Eckermann, S. D., Broutman, D. & Ma, J. Momentum flux estimates for South Georgia Island mountain waves in the stratosphere observed via satellite. Geophys. Res. Lett.https://doi.org/10.1029/2009GL038587 (2009).

    Article 

    Google Scholar
     

  • 31.

    Plougonven, R., Hertzog, A. & Teitelbaum, H. Observations and simulations of a large-amplitude mountain wave breaking over the Antarctic Peninsula. J. Geophys. Res. Atmos.https://doi.org/10.1029/2007JD009739 (2007).

    Article 

    Google Scholar
     

  • 32.

    Alexander, M. J. & Teitelbaum, H. Observation and analysis of a large amplitude mountain wave event over the Antarctic Peninsula. J. Geophys. Res. Atmos.https://doi.org/10.1029/2006JD008368 (2007).

    Article 

    Google Scholar
     

  • 33.

    Sato, K., Tateno, S., Watanabe, S. & Kawatani, Y. Gravity wave characteristics in the southern hemisphere revealed by a high-resolution middle-atmosphere general circulation model. J. Atmos. Sci. 69, 1378–1396. https://doi.org/10.1175/JAS-D-11-0101.1 (2012).

    ADS 
    Article 

    Google Scholar
     

  • 34.

    Manney, G. L. et al. Climatology of upper tropospheric-lower stratospheric (UTLS) jets and tropopauses in MERRA. J. Clim. 27, 3248–3271. https://doi.org/10.1175/JCLI-D-13-00243.1 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 35.

    Taylor, M. J. et al. Large-amplitude mountain waves in the mesosphere observed on 21 June 2014 during DEEPWAVE: 1. Wave development, scales, momentum fluxes, and environmental sensitivity. J. Geophys. Res. Atmos. 124, 10364–10384. https://doi.org/10.1029/2019JD030932 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 36.

    Fritts, D. C. et al. Large-amplitude mountain waves in the mesosphere observed on 21 June 2014 during DEEPWAVE: 2. Nonlinear dynamics, wave breaking, and instabilities. J. Geophys. Res. Atmos. 124, 10006–10032. https://doi.org/10.1029/2019JD030899 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 37.

    Whiteway, J. A. et al. Measurements of gravity wave activity within and around the Arctic stratospheric vortex. Geophys. Res. Lett. 24, 1387–1390. https://doi.org/10.1029/97GL01322 (1997).

    ADS 
    Article 

    Google Scholar
     

  • 38.

    Duck, T. J., Whiteway, J. A. & Carswell, A. I. Lidar observations of gravity wave activity and Arctic stratospheric vortex core warming. Geophys. Res. Lett. 25, 2813–2816. https://doi.org/10.1029/98GL02113 (1998).

    ADS 
    Article 

    Google Scholar
     

  • 39.

    Ehard, B. et al. Horizontal propagation of large-amplitude mountain waves into the polar night jet. J. Geophys. Res. Atmos. 122, 1423–1436. https://doi.org/10.1002/2016JD025621 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 40.

    Kaifler, N. et al. Observational indications of downward-propagating gravity waves in middle atmosphere lidar data. J. Atmos. Solar Terr. Phys. 162, 16–27. https://doi.org/10.1016/j.jastp.2017.03.003 (2017) (Layered Phenomena in the Mesopause Region).

    ADS 
    Article 

    Google Scholar
     

  • 41.

    Eckermann, S. D. et al. High-altitude (0–100 km) global atmospheric reanalysis system: Description and application to the 2014 austral winter of the deep propagating gravity wave experiment (DEEPWAVE). Mon. Weather Rev. 146, 2639–2666. https://doi.org/10.1175/MWR-D-17-0386.1 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 42.

    Reichert, R. et al. Retrieval of intrinsic mesospheric gravity wave parameters using lidar and airglow temperature and meteor radar wind data. Atmos. Meas. Tech. 12, 5997–6015. https://doi.org/10.5194/amt-12-5997-2019 (2019).

    Article 

    Google Scholar
     

  • 43.

    Kaifler, N. et al. Mesospheric temperature during the extreme midlatitude noctilucent cloud event on 18/19 July 2016. J. Geophys. Res. Atmos. 123, 13,775-13,789. https://doi.org/10.1029/2018JD029717 (2018).

    Article 

    Google Scholar
     

  • 44.

    Blanc, E. et al. Middle Atmosphere Variability and Model Uncertainties as Investigated in the Framework of the ARISE Project 845–887 (Springer International Publishing, Cham, 2019).


    Google Scholar
     

  • 45.

    Hauchecorne, A. & Chanin, M.-L. Density and temperature profiles obtained by lidar between 35 and 70 km. Geophys. Res. Lett. 7, 565–568. https://doi.org/10.1029/GL007i008p00565 (1980).

    ADS 
    Article 

    Google Scholar
     

  • 46.

    Ehard, B., Kaifler, B., Kaifler, N. & Rapp, M. Evaluation of methods for gravity wave extraction from middle-atmospheric lidar temperature measurements. Atmos. Meas. Tech. 8, 4645–4655. https://doi.org/10.5194/amt-8-4645-2015 (2015).

    Article 

    Google Scholar
     

  • 47.

    Malardel, S. & Wedi, N. P. How does subgrid-scale parametrization influence nonlinear spectral energy fluxes in global NWP models? J. Geophys. Res. Atmos. 121, 5395–5410. https://doi.org/10.1002/2015JD023970 (2016).

    Article 

    Google Scholar
     

  • 48.

    Rapp, M., Dörnbrack, A. & Preusse, P. Large midlatitude stratospheric temperature variability caused by inertial instability: A potential source of bias for gravity wave climatologies. Geophys. Res. Lett. 45, 10682–10690. https://doi.org/10.1029/2018GL079142 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 49.

    Harvey, V. L. & Knox, J. A. Beware of inertial instability masquerading as gravity waves in stratospheric temperature perturbations. Geophys. Res. Lett. 46, 1740–1745. https://doi.org/10.1029/2018GL081142 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 50.

    Ehard, B. et al. Comparing ECMWF high-resolution analyses with lidar temperature measurements in the middle atmosphere. Q. J. R. Meteorol. Soc. 144, 633–640. https://doi.org/10.1002/qj.3206 (2018).

    ADS 
    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *