Liquid/solution-based microfluidic quantum dots light-emitting diodes for high-colour-purity light emission


  • 1.

    Tang, C. W. & VanSlyke, S. A. Organic electroluminescent diodes. Appl. Phys. Lett. 51, 913–915 (1987).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 2.

    Tang, C. W., VanSlyke, S. A. & Chen, C. Electroluminescence of doped organic thin films. J. Appl. Phys. 65, 3610–3616 (1989).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 3.

    Gustafsson, G. et al. Flexible light-emitting diodes made from soluble conducting polymers. Nature 357, 477–479 (1992).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 4.

    Li, H., Choi, J. & Nakanishi, T. Optoelectronic functional materials based on alkylated-π molecules: self-assembled architectures and nonassembled liquids. Langmuir 29, 5394–5406 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Babu, S. S. & Nakanishi, T. Nonvolatile functional molecular liquids. Chem. Commun. 49, 9373–9382 (2013).

    Article 

    Google Scholar
     

  • 6.

    Ghosh, A. & Nakanishi, T. Frontiers of solvent-free functional molecular liquids. Chem. Commun. 53, 10344–10357 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Lu, F. & Nakanishi, T. Solvent-Free Luminous Molecular Liquids. Adv. Opt. Mater. 7, 1900176 (2019).

    Article 

    Google Scholar
     

  • 8.

    Shinohara, A., Pan, C., Wang, L. & Nakanishi, T. Design of solvent-free functional fluids via molecular nanoarchitectonics approaches. Mol. Syst. Des. Eng. 4, 78–90 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Xu, D. & Adachi, C. Organic light-emitting diode with liquid emitting layer. Appl. Phys. Lett. 95, 053304 (2009).

    ADS 
    Article 

    Google Scholar
     

  • 10.

    Wakchaure, V. C. et al. Charge transfer liquid: a stable donor–acceptor interaction in the solvent-free liquid state. Chem. Commun. 55, 9371–9374 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Hirata, S. et al. Improvement of electroluminescence performance of organic light-emitting diodes with a liquid-emitting layer by introduction of electrolyte and a hole-blocking layer. Adv. Mater. 23, 889–893 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Kasahara, T. et al. Fabrication and performance evaluation of microfluidic organic light emitting diode. Sens. Actuators A Phys. 195, 219–223 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Tsuwaki, M. et al. Fabrication and characterization of large-area flexible microfluidic organic light-emitting diode with liquid organic semiconductor. Sens. Actuators A Phys. 216, 231–236 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Kasahara, T. et al. Multi-color microfluidic organic light-emitting diodes based on on-demand emitting layers of pyrene-based liquid organic semiconductors with fluorescent guest dopants. Sens. Actuators B Chem. 207, 481–489 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Kasahara, T. et al. Recent advances in research and development of microfluidic organic light-emitting devices. J. Photopolym. Sci. Technol. 30, 467–474 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Kobayashi, N. et al. Microfluidic white organic light-emitting diode based on integrated patterns of greenish-blue and yellow solvent-free liquid emitters. Sci. Rep. 5, 14822 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 17.

    Hirata, S. et al. Improved device lifetime of organic light emitting diodes with an electrochemically stable π-conjugated liquid host in the liquid emitting layer. Jpn. J. Appl. Phys. 51, 041604 (2012).

    ADS 

    Google Scholar
     

  • 18.

    Kobayashi, N. et al. A wide-energy-gap naphthalene-based liquid organic semiconductor host for liquid deep-blue organic light-emitting diodes. J. Lumin. 200, 19–23 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Hatakeyama, T. et al. Ultrapure blue thermally activated delayed fluorescence molecules: efficient HOMO–LUMO separation by the multiple resonance effect. Adv. Mater. 28, 2777–2781 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Stevens, B. The photoluminescence and associated processes of complex organic molecules in the vapor phase. Chem. Rev. 57, 439–477 (1957).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Blanton, S. A., Dehestani, A., Lin, P. C. & Guyot-Sionnest, P. Photoluminescence of single semiconductor nanocrystallites by two-photon excitation microscopy. Chem. Phys. Lett. 229, 317–322 (1994).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 22.

    Klimov, V. I. et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314–317 (2000).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 23.

    Kim, T., Jun, S., Cho, K., Choi, B. L. & Jang, E. Bright and stable quantum dots and their applications in full-color displays. MRS Bull. 38, 712–720 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 24.

    Colvin, V., Schlamp, M. & Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370, 354–357 (1994).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 25.

    Dabbousi, B., Bawendi, M., Onitsuka, O. & Rubner, M. Electroluminescence from CdSe quantum-dot/polymer composites. Appl. Phys. Lett. 66, 1316–1318 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 26.

    Lee, J., Sundar, V. C., Heine, J. R., Bawendi, M. G. & Jensen, K. F. Full color emission from II–VI semiconductor quantum dot–polymer composites. Adv. Mater. 12, 1102–1105 (2000).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Coe-Sullivan, S., Liu, W., Allen, P. & Steckel, J. S. Quantum dots for LED downconversion in display applications. ECS J. Solid State Sci. Technol. 2, R3026–R3030 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Jun, S., Lee, J. & Jang, E. Highly luminescent and photostable quantum dot–silica monolith and its application to light-emitting diodes. ACS Nano 7, 1472–1477 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Kim, H. et al. Enhancement of optical efficiency in white OLED display using the patterned photoresist film dispersed with quantum dot nanocrystals. J. Display Technol. 12, 526–531 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 30.

    Ko, Y., Jalalah, M., Lee, S. & Park, J. Super ultra-high resolution liquid-crystal-display using Perovskite quantum-dot functional color-filters. Sci. Rep. 8, 12881 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 31.

    Kawamura, M. et al. High-color-purity microfluidic quantum dots light-emitting diodes using the electroluminescence of the liquid organic semiconductor backlight. Proceedings of 20th International Conference on Solid-State Sensors and Actuators, Transducers (Berlin, Germany) 724–727 (2019).

  • 32.

    Kawamura, M. et al. RGB all liquid-based microfluidic quantum dots light-emitting diodes using deep-blue liquid organic semiconductor backlight. Proceedings of 33rd International Conference on Micro Electro Mechanical Systems, MEMS (Vancouver, BC, Canada) 1238–1241 (2020).

  • 33.

    Tessler, N., Harrison, N., Thomas, D. & Friend, R. Current heating in polymer light emitting diodes. Appl. Phys. Lett. 73, 732–734 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 34.

    Yoshida, K. et al. Joule heat-induced breakdown of organic thin-film devices under pulse operation. J. Appl. Phys. 121, 195503 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 35.

    Jin, M., Huang, Y.-H. & Luo, J.-X. Effect of quantum dots CdSe/ZnS’s concentration on its fluorescence. Spectrosc. Spect. Anal. 35, 420–423 (2015).

    CAS 

    Google Scholar
     

  • 36.

    Schlamp, M., Peng, X. & Alivisatos, A. Improved efficiencies in light emitting diodes made with CdSe (CdS) core/shell type nanocrystals and a semiconducting polymer. J. Appl. Phys. 82, 5837–5842 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 37.

    Zhao, J. et al. Electroluminescence from isolated Cdse∕ Zns quantum dots in multilayered light-emitting diodes. J. Appl. Phys. 96, 3206–3210 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 38.

    Woo, H. et al. Robust, processable, and bright quantum dot/organosilicate hybrid films with uniform QD distribution based on thiol-containing organosilicate ligands. J. Mater. Chem. C 1, 1983–1989 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 39.

    Feng, Q. et al. Fluxible monodisperse quantum dots with efficient luminescence . Angew. Chem. Int. Ed. 49, 9943–9946 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 40.

    Zhou, J., Demei, T. & Haibing, L. Multi-emission CdTe quantum dot nanofluids. J. Mater. Chem. 21, 8521–8523 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 41.

    Zhang, J., Ma, J., Shi, F., Tian, D. & Li, H. Chiral responsive liquid quantum dots. Adv. Mater. 29, 1700296 (2017).

    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *