Low levels of salivary metals, oral microbiome composition and dental decay


  • 1.

    Haley, K. et al. The human antimicrobial protein calgranulin C participates in control of Helicobacter pylori growth and regulation of virulence. Infect. Immun. 83, 2944–2956 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Porcheron, G., Garénaux, A., Proulx, J., Sabri, M. & Dozois, C. Iron, copper, zinc, and manganese transport and regulation in pathogenic Enterobacteria: correlations between strains, site of infection and the relative importance of the different metal transport systems for virulence. Front. Cell. Infect. Microbiol. 3, 1 (2013).


    Google Scholar
     

  • 3.

    Luo, J., Hein, C., Mücklich, F. & Solioz, M. Killing of bacteria by copper, cadmium, and silver surfaces reveals relevant physicochemical parameters. Biointerphases 12, 020301 (2017).

    PubMed 

    Google Scholar
     

  • 4.

    Centers for Disease Control. Hygiene-related Diseases. Cdc.gov (2019). Available at: https://www.cdc.gov/healthywater/hygiene/disease/dental_caries.html#one (Accessed 21 June 2019)

  • 5.

    National Institutes of Health. Periodontal (Gum) Disease. Nidcr.nih.gov (2018). Available at: https://www.nidcr.nih.gov/research/data-statistics/periodontal-disease

  • 6.

    Lead (Pb) Toxicity: What Are the U.S. Standards for Lead Levels? | ATSDR—Environmental Medicine & Environmental Health Education—CSEM. Atsdr.cdc.gov (2017). Available at: https://www.atsdr.cdc.gov/csem/csem.asp?csem=34&po=8

  • 7.

    Nriagu, J., Burt, B., Linder, A., Ismail, A. & Sohn, W. Lead levels in blood and saliva in a low-income population of Detroit, Michigan. Int. J. Hyg. Environ. Health 209, 109–121 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Youravong, N., Teanpaisan, R. & Chongsuvivatwong, V. Salivary lead in relation to caries, salivary factors and cariogenic bacteria in children. Int. Dent. J. 63, 123–129 (2013).

    PubMed 

    Google Scholar
     

  • 9.

    Leistevuo, J. et al. Dental amalgam fillings and the amount of organic mercury in human saliva. Caries Res. 35, 163–166 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Herman, M. et al. Essential and toxic metals in oral fluid: a potential role in the diagnosis of periodontal diseases. Biol. Trace Elem. Res. 173, 275–282 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Fernandes, A., Macklaim, J., Linn, T., Reid, G. & Gloor, G. ANOVA-Like differential expression (ALDEx) analysis for mixed population RNA-Seq. PLoS ONE 8, e67019 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215(3), 403–410 (1990).

    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Gaulke, C. et al. Marginal zinc deficiency and environmentally relevant concentrations of arsenic elicit combined effects on the gut microbiome. mSphere 3, 1 (2018).


    Google Scholar
     

  • 14.

    Segata, N. et al. Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol. 13(6), R42 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Caufield, P. W., Schön, C. N., Saraithong, P., Li, Y. & Argimón, S. Oral lactobacilli and dental caries: a model for niche adaptation in humans. J. Dent. Res. 94(9 Suppl), 110S-S118. https://doi.org/10.1177/0022034515576052 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Lif Holgerson, P., Öhman, C., Rönnlund, A. & Johansson, I. Maturation of oral microbiota in children with or without dental caries. PLoS ONE 10(5), e0128534 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Sun, X. et al. Vegetation type impacts microbial interaction with antimony contaminants in a mining-contaminated soil environment. Environ Pollut. 252(Pt B), 1872–1881 (2012).


    Google Scholar
     

  • 18.

    Xiao, E. et al. Variation in rhizosphere microbiota correlates with edaphic factor in an abandoned antimony tailing dump. Environ. Pollut. 253, 141–151 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Sun, W. et al. Bacterial response to antimony and arsenic contamination in rice paddies during different flooding conditions. Sci. Total Environ. 675, 273–285 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Zhang, H. et al. Inherent bacterial community response to multiple heavy metals in sediment from river-lake systems in the Poyang Lake China. Ecotoxicol. Environ. Saf. 165, 314–324 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Sun, X. et al. Impacts of arsenic and antimony co-contamination on sedimentary microbial communities in rivers with different pollution gradients. Microb. Ecol. 78(3), 589–602 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Wang, N., Wang, A., Xie, J. & He, M. Responses of soil fungal and archaeal communities to environmental factors in an ongoing antimony mine area. Sci. Total Environ. 652, 1030–1039 (2019).

    ADS 
    PubMed 

    Google Scholar
     

  • 23.

    Sun, W. et al. Response of soil microbial communities to elevated antimony and arsenic contamination indicates the relationship between the innate microbiota and contaminant fractions. Environ. Sci. Technol. 51(16), 9165–9175 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Xiao, E. et al. Depth-resolved microbial community analyses in two contrasting soil cores contaminated by antimony and arsenic. Environ. Pollut. 221, 244–255 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Baydum, V. P. & Oliveira, F. H. Influence of metals on the cyanobacterial community in a water supply system in a tropical region. Water Environ. Res. 89(1), 72–76 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Xiao, E. et al. Microbial diversity and community structure in an antimony-rich tailings dump. Appl. Microbiol. Biotechnol. 100(17), 7751–7763 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Xiao, E. et al. Correlating microbial community profiles with geochemical conditions in a watershed heavily contaminated by an antimony tailing pond. Environ. Pollut. 215, 141–153 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Lai, C. Y. et al. Autotrophic antimonate bio-reduction using hydrogen as the electron donor. Water Res. 88, 467–474 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Guo, D. et al. Changes in rhizosphere bacterial communities during remediation of heavy metal-accumulating plants around the Xikuangshan mine in southern China. Sci. Rep. 9(1), 1947 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Michalke, K. et al. Role of intestinal microbiota in transformation of bismuth and other metals and metalloids into volatile methyl and hydride derivatives in humans and mice. Appl. Environ. Microbiol. 74(10), 3069–3075 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Ding, T. & Schloss, P. D. Dynamics and associations of microbial community types across the human body. Nature 509(7500), 357–360 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Agency for Toxic Substances & Disease Registry. Toxicological Profiles for Lead. Atlanta, GA: U.S. Department of Health and Human Services, 2007 Contract No.: Report

  • 33.

    Hernandez-Avila, M., Smith, D., Meneses, F., Sanin, L. & Hu, H. The influence of bone and blood lead on plasma lead levels in environmentally exposed adults. Environ. Health Perspect. 106, 473 (1998).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Kouremenou-Dona, E., Dona, A., Papoutsis, J. & Spiliopoulou, C. Copper and zinc concentrations in serum of healthy Greek adults. Sci. Total Environ. 359, 76–81 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Agency for Toxic Substances & Disease Registry. Toxicological profile for chromium. Atlanta, GA: Department of Health and Human Services, 2012 Contract No.: Report.

  • 36.

    Agency for Toxic Substances & Disease Registry. Toxicological profile for cadmium. Atlanta, GA: U.S. Department of Health and Human Services, 2012 Contract No.: Report.

  • 37.

    Agency for Toxic Substances & Disease Registry. Toxicological Profile for Arsenic. 2007.

  • 38.

    Clarkson, T., Vyas, J. & Ballatori, N. Mechanisms of mercury disposition in the body. Am. J. Ind. Med. 50, 757–764 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Cooper, S. & Helmstetter, C. E. Chromosome replication and the division cycle of Escherichia coli. Br. J. Mol. Biol. 31(3), 519–540 (1968).

    CAS 

    Google Scholar
     

  • 40.

    The National Academies of Sciences, Engineering, and Medicine. New insights into microbiome study for environmental health: proceedings of a workshop-in brief. National Academies Press (2016). https://www.ncbi.nlm.nih.gov/books/NBK379145/

  • 41.

    Manju, R., Hegde, A. M. & Keshan, A. Environmental arsenic contamination and its effect on dental caries experience in school children. J. Adv. Oral Res. 8(1–2), 21–25 (2017).


    Google Scholar
     

  • 42.

    Gupta, N., Vujicic, M., Yarbrough, C. & Harrison, B. Disparities in untreated caries among children and adults in the US, 2011–2014. BMC Oral Health 18(1), 30. https://doi.org/10.1186/s12903-018-0493-7 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Foxman, B. et al. The effects of family, dentition, and dental caries on the salivary microbiome. Ann. Epidemiol. 26, 348–354 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Polk, D. et al. Study protocol of the Center for Oral Health Research in Appalachia (COHRA) etiology study. BMC Oral Health 8, 1 (2008).


    Google Scholar
     

  • 45.

    Gloor, G. et al. Microbiome profiling by illumina sequencing of combinatorial sequence-tagged PCR products. PLoS ONE 5, e15406 (2010).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Magoc, T. & Salzberg, S. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Caporaso, J. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Meadow, J. Convert QIIME files into Oligotyping format. Github Repository. Available from https://github.com/jfmeadow/q2oligo/blob/master/q2oligo.py. (2014).

  • 49.

    Eren, A. et al. Minimum entropy decomposition: Unsupervised oligotyping for sensitive partitioning of high-throughput marker gene sequences. ISME J. 9, 968–979 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Griffen, A. et al. CORE: A phylogenetically-curated 16S rDNA database of the core oral microbiome. PLoS ONE 6, e19051 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    R Development Core Team (2008). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org.

  • 52.

    SAS Institute Inc 2013. SAS 9.4. Cary, NC: SAS Institute Inc.

  • 53.

    Box, G. & Cox, D. An analysis of transformations. Journal of the Royal Statistical Society. Series B (Methodological 26, 211–252 (1964).

  • 54.

    Venables, W. N. & Ripley, B. D. Modern applied statistics with S 4th edn. (Springer, New York, 2002).


    Google Scholar
     

  • 55.

    Grubbs, F. Sample criteria for testing outlying observations. Ann. Math. Stat. 21, 27–58 (1950).

    MathSciNet 
    MATH 

    Google Scholar
     

  • 56.

    Lukasz Komsta. outliers: Tests for outliers. R package version 0.14. https://CRAN.R-project.org/package=outliers (2011).

  • 57.

    McMurdie and Holmes. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8(4), e61217 (2013).

    ADS 
    PubMed 

    Google Scholar
     

  • 58.

    Fernandes, A. D., Vu, M. T. H. Q., Edward, L.-M., Macklaim, J. M. & Gloor, G. B. A reproducible effect size is more useful than an irreproducible hypothesis test to analyze high throughput sequencing datasets. Preprint at https://arxiv.org/abs/1809.02623 (2018).

  • 59.

    Gross, E. L. et al. Beyond Streptococcus mutans: dental caries onset linked to multiple species by 16S rRNA community analysis. PLoS ONE 7(10), 1 (2012).


    Google Scholar
     

  • 60.

    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).

    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *