Mammographic image classification with deep fusion learning


  • 1.

    World Health Organization. International Agency for Research on Cancer GLOBOCAN 2012: Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2012 (WHO, Geneva, 2012).


    Google Scholar
     

  • 2.

    Buciu, I. & Gacsadi, A. Directional features for automatic tumor classification of mammogram images. Biomed. Signal Process. Control. 6, 370–378 (2011).

    Article 

    Google Scholar
     

  • 3.

    Swiniarski, R. W., Luu, T., Swiniarska, A. K. & Tanto, H. Data mining and online recognition of mammographic images based on haar wavelets, principal component analysis, and rough sets methods. In Medical Imaging 2001: Image Perception and Performance, vol. 4324, 242–248 (International Society for Optics and Photonics, 2001).

  • 4.

    Mencattini, A., Salmeri, M., Lojacono, R., Frigerio, M. & Caselli, F. Mammographic images enhancement and denoising for breast cancer detection using dyadic wavelet processing. IEEE Trans. Instrum. Meas. 57, 1422–1430 (2008).

    Article 

    Google Scholar
     

  • 5.

    Cheng, E. et al. Mammographic image classification using histogram intersection. In 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 197–200 (IEEE, 2010).

  • 6.

    Zaıane, O. R., Antonie, M.-L. & Coman, A. Mammography classification by an association rulebased classifier. MDM/KDD 62–69 (2002).

  • 7.

    Zhao, Y., Chen, D., Xie, H., Zhang, S. & Gu, L. Mammographic image classification system via active learning. J. Med. Biol. Eng. 39, 569–582 (2019).

    Article 

    Google Scholar
     

  • 8.

    Voulodimos, A., Doulamis, N., Doulamis, A. & Protopapadakis, E. Deep learning for computer vision: A brief review. Comput. Intelligence Neuroscience 20, 18. https://doi.org/10.1155/2018/7068349 (2018).

    Article 

    Google Scholar
     

  • 9.

    Yu, X., Yu, Z., Wu, L., Pang, W. & Lin, C. Data-driven two-layer visual dictionary structure learning. J. Electron. Imaging 28, 023006 (2019).

    ADS 

    Google Scholar
     

  • 10.

    Che, D. et al. Tire tread pattern recognition based on non-linear activated aggregation residual neural network. J. Jiangxi Univ. Sci. Technol. 40, 80–85 (2019).


    Google Scholar
     

  • 11.

    Yu, X. et al. Deep ensemble learning for human action recognition in still images. Complexity https://doi.org/10.1155/2020/9428612 (2020).

    Article 

    Google Scholar
     

  • 12.

    Yang, G. et al. Research on deep learning classification for nonlinear activation function. J. Jiangxi Univ. Sci. Technol. 39, 76–83 (2018).


    Google Scholar
     

  • 13.

    Wang, J. et al. Discrimination of breast cancer with microcalcifications on mammography by deep learning. Sci. reports 6, 1–9 (2016).

    ADS 

    Google Scholar
     

  • 14.

    Huynh, B. Q., Li, H. & Giger, M. L. Digital mammographic tumor classification using transfer learning from deep convolutional neural networks. J. Med. Imaging 3, 034501 (2016).

    Article 

    Google Scholar
     

  • 15.

    Li, B., Ge, Y., Zhao, Y., Guan, E. & Yan, W. Benign and malignant mammographic image classification based on convolutional neural networks. In Proceedings of the 2018 10th International Conference on Machine Learning and Computing, 247–251 (2018).

  • 16.

    Lévy, D. & Jain, A. Breast mass classification from mammograms using deep convolutional neural networks. arXiv preprint arXiv:1612.00542 (2016).

  • 17.

    Cai, H. et al. Breast microcalcification diagnosis using deep convolutional neural network from digital mammograms. Comput. Math. Methods Med. 1, 4. https://doi.org/10.1155/2019/2717454 (2019).

    Article 
    MATH 

    Google Scholar
     

  • 18.

    Suckling J, P. The mammographic image analysis society digital mammogram database. Digit. Mammo 375–386 (1994).

  • 19.

    Maaten, L. V. D. & Hinton, G. Visualizing data using t-sne. J. Mach. Learn. Res. 9, 2579–2605 (2008).

    MATH 

    Google Scholar
     

  • 20.

    Jenifer, S., Parasuraman, S. & Kadirvelu, A. Contrast enhancement and brightness preserving of digital mammograms using fuzzy clipped contrast-limited adaptive histogram equalization algorithm. Appl. Soft Comput. 42, 167–177 (2016).

    Article 

    Google Scholar
     

  • 21.

    Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

  • 22.

    Lin, M., Chen, Q. & Yan, S. Network in network. arXiv preprint arXiv:1312.4400 (2013).

  • 23.

    Szegedy, C. et al. Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition, 1–9 (2015).

  • 24.

    Sivic, J. & Zisserman, A. Video google: A text retrieval approach to object matching in videos. In null, 1470 (IEEE, 2003).

  • 25.

    Upadhyay, P. K. & Chandra, S. Salient bag of feature for skin lesion recognition. Int. J. Perform. Eng. 15, 1083–1093 (2019).


    Google Scholar
     

  • 26.

    Huang, J.-B. & Yang, M.-H. Fast sparse representation with prototypes. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 3618–3625 (IEEE, 2010).

  • 27.

    Liu, Y., Chen, X., Ward, R. K. & Wang, Z. J. Image fusion with convolutional sparse representation. IEEE Signal Process. Lett. 23, 1882–1886 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 28.

    Liu, C. & Wechsler, H. Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE Trans. Image Process. 11, 467–476 (2002).

    ADS 
    Article 

    Google Scholar
     

  • 29.

    Khan, S., Hussain, M., Aboalsamh, H. & Bebis, G. A comparison of different gabor feature extraction approaches for mass classification in mammography. Multimed. Tools Appl. 76, 33–57 (2017).

    Article 

    Google Scholar
     

  • 30.

    Huang, G., Liu, Z., Van Der Maaten, L. & Weinberger, K. Q. Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, 4700–4708 (2017).

  • 31.

    He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, 770–778 (2016).

  • 32.

    Howard, A. G. et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *