Mantle flow distribution beneath the California margin


  • 1.

    Zeng, Y. & Shen, Z.-K. A fault-based model for crustal deformation, fault slip rates, and off-fault strain rate in California. Bull. Seismol. Soc. Am. 106, 766–784 (2016).


    Google Scholar
     

  • 2.

    Klein, E. et al. Transient deformation in California from two decades of GPS displacements: Implications for a three-dimensional kinematic reference frame. J. Geophys. Res. 124, 12189–12223 (2019).

    ADS 

    Google Scholar
     

  • 3.

    Field, E. H. et al. A spatiotemporal clustering model for the third Uniform California Earthquake Rupture Forecast (UCERF3-ETAS): toward an operational earthquake forecast. Bull. Seismol. Soc. Am. 107, 1049–1081 (2017).


    Google Scholar
     

  • 4.

    Silver, P. & Holt, W. The mantle flow field beneath western North America. Science 295, 1054–1057 (2002).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Zandt, G. & Humphreys, E. Toroidal mantle flow through the western US slab window. Geology 36, 295–298 (2008).

    ADS 

    Google Scholar
     

  • 6.

    Moschetti, M., Ritzwoller, M., Lin, F. & Yang, Y. Seismic evidence for widespread western-US deep-crustal deformation caused by extension. Nature 464, 885–889 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Barbot, S. Modulation of fault strength during the seismic cycle by grain-size evolution around contact junctions. Tectonophysics 765, 129–145 (2019).

    ADS 

    Google Scholar
     

  • 8.

    Barbot, S. Slow-slip, slow earthquakes, period-two cycles, full and partial ruptures, and deterministic chaos in a single asperity fault. Tectonophysics 768, 228171 (2019).

  • 9.

    Blanpied, M. L., Lockner, D. A. & Byerlee, J. D. Frictional slip of granite at hydrothermal conditions. J. Geophys. Res. 100, 13045–13064 (1995).

    ADS 
    CAS 

    Google Scholar
     

  • 10.

    Nazareth, J. J. & Hauksson, E. The seismogenic thickness of the southern California crust. Bull. Seismol. Soc. Am. 94, 940–960 (2004).


    Google Scholar
     

  • 11.

    Hauksson, E. Crustal geophysics and seismicity in southern California. Geophys. J. Int. 186, 82–98 (2011).

    ADS 

    Google Scholar
     

  • 12.

    Sauber, J., Thatcher, W., Solomon, S. C. & Lisowski, M. Geodetic slip rate for the eastern California shear zone and the recurrence time of Mojave Desert earthquakes. Nature 367, 264–266 (1994).

    ADS 

    Google Scholar
     

  • 13.

    Smith, B. & Sandwell, D. Coulomb stress accumulation along the San Andreas Fault system. J. Geophys. Res. 108, 10 (2003).


    Google Scholar
     

  • 14.

    Platt, J. P. & Becker, T. W. Where is the real transform boundary in California? Geochem. Geophys. Geosyst. 11, 6 (2010).

  • 15.

    Lindsey, E. O. et al. Interseismic strain localization in the San Jacinto fault zone. Pure Appl. Geophys. 171, 2937–2954 (2014).

    ADS 

    Google Scholar
     

  • 16.

    Smith-Konter, B. R. & Sandwell, D. T. Locking depths estimated from geodesy and seismology along the San Andreas Fault System: implications for seismic moment release. J. Geophys. Res. 116, B6 (2011).

  • 17.

    Jiang, J. & Lapusta, N. Deeper penetration of large earthquakes on seismically quiescent faults. Science 352, 1293–1297 (2016).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • 18.

    Kohlstedt, D. L., Evans, B. & Mackwell, S. J. Strength of the lithosphere: constraints imposed by laboratory experiments. J. Geophys. Res. 100, 17587–17602 (1995).

    ADS 

    Google Scholar
     

  • 19.

    Hirth, G. & Kohlstedt, D. L. In Rheology of the upper mantle and the mantle wedge: a view from the experimentalists (ed. J. Eiler), Vol. 138. pp. 83–105 (Blackwell Publishing Ltd, Washington, D. C., 2003).

  • 20.

    England, P., Houseman, G. & Sonder, L. Length scales for continental deformation in convergent, divergent, and strike-slip environments: analytical and approximate solutions for a thin viscous sheet model. J. Geophys. Res. 90, 3551–3557 (1985).

    ADS 

    Google Scholar
     

  • 21.

    Thatcher, W. & England, P. C. Ductile shear zones beneath strike-slip faults: implications for the thermomechanics of the San Andreas fault zone. J. Geophys. Res. 103, 891–905 (1998).

    ADS 

    Google Scholar
     

  • 22.

    Takeuchi, C. S. & Fialko, Y. Dynamic models of interseismic deformation and stress transfer from plate motion to continental transform faults. J. Geophys. Res. 117, B5 (2012).

  • 23.

    Allison, K. L. & Dunham, E. M. Earthquake cycle simulations with rate-and-state friction and power-law viscoelasticity. Tectonophysics 733, 232–256 (2018).

    ADS 

    Google Scholar
     

  • 24.

    Zhang, X. & Sagiya, T. Intraplate strike-slip faulting, stress accumulation, and shear localization of a crust-upper mantle system with nonlinear viscoelastic material. J. Geophys. Res. 123, 9269–9285 (2018).


    Google Scholar
     

  • 25.

    Pollitz, F. F., Peltzer, G. & Bürgmann, R. Mobility of continental mantle: evidence from postseismic geodetic observations following the 1992 landers earthquake. J. Geophys. Res. 105, 8035–8054 (2000).

    ADS 

    Google Scholar
     

  • 26.

    Freed, A. M. & Bürgmann, R. Evidence of power-law flow in the Mojave desert mantle. Nature 430, 548–551 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Freed, A. M., Bürgmann, R. & Herring, T. Far-reaching transient motions after Mojave earthquakes require broad mantle flow beneath a strong crust. Geophys. Res. Lett. 34, 19 (2007).

  • 28.

    Bruhat, L., Barbot, S. & Avouac, J. P. Evidence for postseismic deformation of the lower crust following the 2004 Mw6.0 Parkfield earthquake. J. Geophys. Res. 116, 10 (2011).


    Google Scholar
     

  • 29.

    Rollins, C., Barbot, S. & Avouac, J.-P. Postseismic deformation following the 2010 M=7.2 El Mayor-Cucapah earthquake: observations, kinematic inversions, and dynamic models. Pure Appl. Geophys. 172, 1305–1358 (2015).

    ADS 

    Google Scholar
     

  • 30.

    Pollitz, F. F. Transient rheology of the uppermost mantle beneath the Mojave Desert, California. Earth Planet. Sci. Lett. 215, 89–104 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • 31.

    Lin, Y.-P., Zhao, L. & Hung, S.-H. Full-wave multiscale anisotropy tomography in Southern California. Geophys. Res. Lett. 41, 8809–8817 (2014).

    ADS 

    Google Scholar
     

  • 32.

    Lai, V. H., Graves, R. W., Wei, S. & Helmberger, D. Evidence for strong lateral seismic velocity variation in the lower crust and upper mantle beneath the California margin. Earth Planet. Sci. Lett. 463, 202–211 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 33.

    Bird, P. Long-term fault slip rates, distributed deformation rates, and forecast of seismicity in the western United States from joint fitting of community geologic, geodetic, and stress direction data sets. J. Geophys. Res. 114, B11 (2009).

  • 34.

    Field, E. H. et al. A synoptic view of the third Uniform California Earthquake Rupture Forecast (UCERF3). Seismol. Res. Lett. 88, 1259–1267 (2017).


    Google Scholar
     

  • 35.

    Hearn, E. H. Kinematics of southern California crustal deformation: Insights from finite-element models. Tectonophysics 758, 12–28 (2019).

    ADS 

    Google Scholar
     

  • 36.

    McCaffrey, R. Block kinematics of the Pacific–North America plate boundary in the southwestern United States from inversion of GPS, seismological, and geologic data. J. Geophys. Res. 110, B7 (2005).

  • 37.

    Meade, B. J. & Hager, B. H. Block models of crustal motion in southern California constrained by GPS measurements. J. Geophys. Res. 110, B03403 (2005).

  • 38.

    Spinler, J. C. et al. Present-day strain accumulation and slip rates associated with southern San Andreas and eastern California shear zone faults. J. Geophys. Res. 115, B11 (2010).

  • 39.

    Hammond, W. C., Blewitt, G. & Kreemer, C. Block modeling of crustal deformation of the northern Walker Lane and Basin and Range from GPS velocities. J. Geophys. Res. 116, B4 (2011).

  • 40.

    Evans, E. L., Loveless, J. P. & Meade, B. J. Total variation regularization of geodetically and geologically constrained block models for the Western United States. Geophys. J. Int. 202, 713–727 (2015).

    ADS 

    Google Scholar
     

  • 41.

    Evans, E. L. A comprehensive analysis of geodetic slip-rate estimates and uncertainties in California. Bull. Seismol. Soc. Am. 108, 1–18 (2018).


    Google Scholar
     

  • 42.

    Oskin, M. et al. Elevated shear zone loading rate during an earthquake cluster in eastern California. Geology 36, 507–510 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • 43.

    Chéry, J., Zoback, M. D. & Hassani, R. An integrated mechanical model of the San Andreas fault in central and northern California. J. Geophys. Res. 106, 22051–22066 (2001).

    ADS 

    Google Scholar
     

  • 44.

    Chéry, J. Geodetic strain across the San Andreas fault reflects elastic plate thickness variations (rather than fault slip rate). Earth Planet. Sci. Lett. 269, 352–365 (2008).

    ADS 

    Google Scholar
     

  • 45.

    Fay, N. P. & Humphreys, E. D. Fault slip rates, effects of elastic heterogeneity on geodetic data, and the strength of the lower crust in the Salton Trough region, southern California. J. Geophys. Res. 110, B09401 (2005).

  • 46.

    Chuang, R. Y. & Johnson, K. M. Reconciling geologic and geodetic model fault slip-rate discrepancies in Southern California: consideration of nonsteady mantle flow and lower crustal fault creep. Geology 39, 627–630 (2011).

    ADS 

    Google Scholar
     

  • 47.

    Barbot, S. & Fialko, Y. Fourier-domain Green’s function for an elastic semi-infinite solid under gravity, with applications to earthquake and volcano deformation. Geophys. J. Int. 182, 568–582 (2010).

    ADS 

    Google Scholar
     

  • 48.

    Barbot, S. & Fialko, Y. A unified continuum representation of postseismic relaxation mechanisms: semi-analytic models of afterslip, poroelastic rebound and viscoelastic flow. Geophys. J. Int. 182, 1124–1140 (2010).

    ADS 

    Google Scholar
     

  • 49.

    Barbot, S., Moore, J. D. & Lambert, V. Displacement and stress associated with distributed anelastic deformation in a half-space. Bull. Seismol. Soc. Am. 107, 821–855 (2017).


    Google Scholar
     

  • 50.

    Barbot, S. Deformation of a half-space from anelastic strain confined in a tetrahedral volume. Bull. Seismol. Soc. Am. 108, 2687 (2018).


    Google Scholar
     

  • 51.

    Lin, Y. N. N., Kositsky, A. P. & Avouac, J. P. PCAIM joint inversion of InSAR and ground-based geodetic time series: application to monitoring magmatic inflation beneath the Long Valley Caldera. Geophys. Res. Lett. 37, 5 https://doi.org/10.1029/2010GL045769 (2010).


    Google Scholar
     

  • 52.

    Tsang, L. L. et al. Afterslip following the 2007 Mw 8.4 Bengkulu earthquake in Sumatra loaded the 2010 Mw 7.8 Mentawai tsunami earthquake rupture zone. J. Geophys. Res. 121, 9034–9049 (2016).


    Google Scholar
     

  • 53.

    Qiu, Q., Moore, J. D. P., Barbot, S., Feng, L. & Hill, E. Transient viscosity in the sumatran mantle wedge from a decade of geodetic observations. Nat. Commun. 9, 995 (2018).

  • 54.

    Tang, C.-H., Hsu, Y.-J., Barbot, S., Moore, J. D. & Chang, W.-L. Lower-crustal rheology and thermal gradient in the Taiwan orogenic belt illuminated by the 1999 Chi-Chi earthquake. Nat. Commun. 5, 2 (2019).

  • 55.

    Weiss, J. R. et al. Illuminating subduction zone rheological properties in the wake of a giant earthquake. Sci. Adv. 5, eaax6720 (2019).

  • 56.

    Hang, Y. et al. Outlier-insensitive bayesian inference for linear inverse problems (outibi) with applications to space geodetic data. Geophys. J. Int. 221, 334–350 (2020).

  • 57.

    Fay, N., Bennett, R. A., Spinler, J. & Humphreys, E. Small-scale upper mantle convection and crustal dynamics in southern California. Geochem. Geophys. Geosyst. 9, 8 (2008).

  • 58.

    Argus, D. F., Fu, Y. & Landerer, F. W. Seasonal variation in total water storage in California inferred from GPS observations of vertical land motion. Geophys. Res. Lett. 41, 1971–1980 (2014).

    ADS 

    Google Scholar
     

  • 59.

    Barbot, S., Lapusta, N. & Avouac, J. P. Under the hood of the earthquake machine: towards predictive modeling of the seismic cycle. Science 336, 707–710 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 60.

    Barbot, S., Agram, P. & De Michele, M. Change of apparent segmentation of the san andreas fault around parkfield from space geodetic observations across multiple periods. J. Geophys. Res. 118, 6311–6327 (2013).

    ADS 

    Google Scholar
     

  • 61.

    Bowman, D., King, G. & Tapponnier, P. Slip partitioning by elastoplastic propagation of oblique slip at depth. Science 300, 1121–1123 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 62.

    Daout, S. et al. Constraining the kinematics of metropolitan Los Angeles faults with a slip-partitioning model. Geophys. Res. Lett. 43, 21 (2016).

  • 63.

    Rollins, C., Avouac, J.-P., Landry, W., Argus, D. F. & Barbot, S. Interseismic strain accumulation on faults beneath Los Angeles, California. J. Geophys. Res. 123, 7126–7150 (2018).

    ADS 

    Google Scholar
     

  • 64.

    Argus, D. F., Heflin, M. B., Peltzer, G., Crampé, F. & Webb, F. H. Interseismic strain accumulation and anthropogenic motion in metropolitan Los Angeles. J. Geophys. Res. 110, B4 (2005).

  • 65.

    Dolan, J. F., McAuliffe, L. J., Rhodes, E. J., McGill, S. F. & Zinke, R. Extreme multi-millennial slip rate variations on the Garlock fault, California: strain super-cycles, potentially time-variable fault strength, and implications for system-level earthquake occurrence. Earth Planet. Sci. Lett. 446, 123–136 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 66.

    Qiu, Q., Barbot, S., Wang, T. & Wei, S. Slip complementarity and triggering between the foreshock, mainshock, and afterslip of the 2019 Ridgecrest rupture sequence. Bull. Seismol. Soc. Am. 110, 1701–1715 (2020).

  • 67.

    Yang, W. & Hauksson, E. The tectonic crustal stress field and style of faulting along the Pacific North America Plate boundary in Southern California. Geophys. J. Int. 194, 100–117 (2013).

    ADS 

    Google Scholar
     

  • 68.

    Bourne, S., England, P. & Parsons, B. The motion of crustal blocks driven by flow of the lower lithosphere and implications for slip rates of continental strike-slip faults. Nature 391, 655 (1998).

    ADS 
    CAS 

    Google Scholar
     

  • 69.

    Roy, M. & Royden, L. H. Crustal rheology and faulting at strike-slip plate boundaries: 1. an analytic model. J. Geophys. Res. 105, 5583–5597 (2000).

    ADS 

    Google Scholar
     

  • 70.

    Long, M. D. & Silver, P. G. Shear wave splitting and mantle anisotropy: Measurements, interpretations, and new directions. Surv. Geophys. 30, 407–461 (2009).

    ADS 

    Google Scholar
     

  • 71.

    Becker, T. W., Schulte-Pelkum, V., Blackman, D. K., Kellogg, J. B. & O’Connell, R. J. Mantle flow under the western United States from shear wave splitting. Earth Planet. Sci. Lett. 247, 235–251 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • 72.

    Bawden, G. W., Michael, A. J. & Kellogg, L. H. Birth of a fault: connecting the Kern County and Walker Pass, California, earthquakes. Geology 27, 601–604 (1999).

    ADS 

    Google Scholar
     

  • 73.

    Dixon, T. H. & Xie, S. A kinematic model for the evolution of the Eastern California Shear Zone and Garlock Fault, Mojave Desert, California. Earth Planet. Sci. Lett. 494, 60–68 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 74.

    Lambert, V. & Barbot, S. Contribution of viscoelastic flow in earthquake cycles within the lithosphere-asthenosphere system. Geophys. Res. Lett. 43, 142–154 (2016).


    Google Scholar
     

  • 75.

    Barbot, S. Asthenosphere flow modulated by megathrust earthquake cycles. Geophys. Res. Lett. 45, 6018–6031 (2018).

    ADS 

    Google Scholar
     

  • 76.

    DeMets, C. & Dixon, T. H. New kinematic models for Pacific-North America motion from 3 Ma to present, I: Evidence for steady motion and biases in the NUVEL-1A model. Geophys. Res. Lett. 26, 1921–1924 (1999).

    ADS 

    Google Scholar
     

  • 77.

    Sella, G. F., Dixon, T. H. & Mao, A. REVEL: a model for recent plate velocities from space geodesy. J. Geophys. Res. 107, ETG-11 (2002).

  • 78.

    DeMets, C., Gordon, R. G. & Argus, D. F. Geologically current plate motions. Geophys. J. Int. 181, 1–80 (2010).

    ADS 

    Google Scholar
     

  • 79.

    Altamimi, Z., Métivier, L. & Collilieux, X. ITRF2008 plate motion model. J. Geophys. Res. 117, B7 (2012).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *