Microfluidic fabrication of microcarriers with sequential delivery of VEGF and BMP-2 for bone regeneration


  • 1.

    Verrier, S. et al. Tissue engineering and regenerative approaches to improving the healing of large bone defects. Eur. Cell Mater. 32, 87–110 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Ramasamy, S. K. et al. Blood flow controls bone vascular function and osteogenesis. Nat. Commun. 7, 13601 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Ramasamy, S. K., Kusumbe, A. P., Wang, L. & Adams, R. H. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature 507, 376–380 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Li, W. W., Talcott, K. E., Zhai, A. W., Kruger, E. A. & Li, V. W. The role of therapeutic angiogenesis in tissue repair and regeneration. Adv. Skin Wound Care 18, 491–500 (2005).

    PubMed 

    Google Scholar
     

  • 5.

    Hu, K. & Olsen, B. R. The roles of vascular endothelial growth factor in bone repair and regeneration. Bone 91, 30–38 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Amini, A. R., Laurencin, C. T. & Nukavarapu, S. P. Bone tissue engineering: Recent advances and challenges. Crit. Rev. Biomed. Eng. 40, 363–408 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Nguyen, L. H. et al. Vascularized bone tissue engineering: Approaches for potential improvement. Tissue Eng. Part B Rev. 18, 363–382 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Marrella, A. et al. Engineering vascularized and innervated bone biomaterials for improved skeletal tissue regeneration. Mater. Today 21, 362–376 (2018).

    CAS 

    Google Scholar
     

  • 9.

    Dimitriou, R., Jones, E., McGonagle, D. & Giannoudis, P. V. Bone regeneration: Current concepts and future directions. BMC Med. 9, 66 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Haugen, H. J., Lyngstadaas, S. P., Rossi, F. & Perale, G. Bone grafts: Which is the ideal biomaterial?. J. Clin. Periodontol. 46, 92–102 (2019).

    PubMed 

    Google Scholar
     

  • 11.

    Cassell, C. O., Hofer, O. S., Morrison, W. A. & Knight, K. R. Vascularisation of tissue-engineered grafts: The regulation of angiogenesis in reconstructive surgery and in disease states. Br. J. Plast. Surg. 55, 603–610 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Yu, H. et al. Improved tissue-engineered bone regeneration by endothelial cell mediated vascularization. Biomaterials 30, 508–517 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Schmidmaier, G., Capanna, R., Wildemann, B., Beque, T. & Lowenberg, D. Bone morphogenetic proteins in critical-size bone defects: What are the options?. Injury 40, S39–S43 (2009).

    PubMed 

    Google Scholar
     

  • 14.

    Khan, W. S., Rayan, F., Dhinsa, B. S. & Marsh, D. An osteoconductive, osteoinductive, and osteogenic tissue-engineered product for trauma and orthopaedic surgery: How far are we?. Stem Cells Int. 20, 12 (2012).


    Google Scholar
     

  • 15.

    Hernigou, P. Bone transplantation and tissue engineering, part III: Allografts, bone grafting and bone banking in the twentieth century. Int. Orthop. 39, 577–587 (2015).

    PubMed 

    Google Scholar
     

  • 16.

    Aponte-Tinao, L. A., Ayerza, M. A., Muscolo, D. L. & Farfalli, G. L. What are the risk factors and management options for infection after reconstruction with massive bone allografts?. Clin. Orthop. Relat. Res. 474, 669–673 (2016).

    PubMed 

    Google Scholar
     

  • 17.

    Vormoor, B. et al. Development of a preclinical orthotopic xenograft model of ewing sarcoma and other human malignant bone disease using advanced in vivo imaging. PLoS ONE 9, e85128 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Eaker, S. et al. Concise review: guidance in developing commercializable autologous/patient-specific cell therapy manufacturing. Stem Cells Transl. Med. 2, 871–883 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Fahimipour, F. et al. Enhancing cell seeding and osteogenesis of MSCs on 3D printed scaffolds through injectable BMP-2 immobilized ECM-Mimetic gel. Dent. Mater. 35, 990–1006 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Fahimipour, F. et al. Collagenous matrix supported by a 3D-printed scaffold for osteogenic differentiation of dental pulp cells. Dent. Mater. 34, 209–220 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Nikpour, P. et al. Dextran hydrogels incorporated with bioactive glass-ceramic: Nanocomposite scaffolds for bone tissue engineering. Carbohyd. Polym. 190, 281–294 (2018).

    CAS 

    Google Scholar
     

  • 22.

    Dhayani, A., Kalita, S., Mahato, M., Srinath, P. & Vemula, P. K. Biomaterials for topical and transdermal drug delivery in reconstructive transplantation. Nanomedicine 14, 2713–2733 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    White, K. A. & Olabisi, R. M. Spatiotemporal control strategies for bone formation through tissue engineering and regenerative medicine approaches. Adv. Healthcare Mater. 8, 1801044 (2019).


    Google Scholar
     

  • 24.

    Fahimipour, F. et al. 3D printed TCP-based scaffold incorporating VEGF-loaded PLGA microspheres for craniofacial tissue engineering. Dent. Mater. 33, 1205–1216 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Khojasteh, A. et al. Development of PLGA-coated β-TCP scaffolds containing VEGF for bone tissue engineering. Mater. Sci. Eng. C 69, 780–788 (2016).

    CAS 

    Google Scholar
     

  • 26.

    Miles, K. B., Maerz, T. & Matthew, H. W. T. Scalable MSC-derived bone tissue modules: In vitro assessment of differentiation, matrix deposition, and compressive load bearing. Acta Biomater. 2, 1 (2019).


    Google Scholar
     

  • 27.

    Steeves, A. J., Atwal, A., Schock, S. C. & Variola, F. Evaluation of the direct effects of poly (dopamine) on the in vitro response of human osteoblastic cells. J. Mater. Chem. B 4, 3145–3156 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Dang, M., Saunders, L., Niu, X., Fan, Y. & Ma, P. X. Biomimetic delivery of signals for bone tissue engineering. Bone Res. 6, 1–12 (2018).

    CAS 

    Google Scholar
     

  • 29.

    Cao, L., Wang, J., Hou, J., Xing, W. & Liu, C. Vascularization and bone regeneration in a critical sized defect using 2-N, 6-O-sulfated chitosan nanoparticles incorporating BMP-2. Biomaterials 35, 684–698 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Akhlaghi, F. et al. Improved bone regeneration through amniotic membrane loaded with buccal fat pad-derived MSCs as an adjuvant in maxillomandibular reconstruction. J. Cranio-Maxillo-Facial Surg. 47, 1266–1273 (2019).

    MathSciNet 

    Google Scholar
     

  • 31.

    Chen, Y., Zhou, S. & Li, Q. Mathematical modeling of degradation for bulk-erosive polymers: applications in tissue engineering scaffolds and drug delivery systems. Acta Biomater. 7, 1140–1149 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Dashtimoghadam, E., Mirzadeh, H., Taromi, F. A. & Nyström, B. Microfluidic self-assembly of polymeric nanoparticles with tunable compactness for controlled drug delivery. Polymer 54, 4972–4979 (2013).

    CAS 

    Google Scholar
     

  • 33.

    Majedi, F. S. et al. Microfluidic assisted self-assembly of chitosan based nanoparticles as drug delivery agents. Lab Chip 13, 204–207 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Riahi, R. et al. Microfluidics for advanced drug delivery systems. Curr. Opin. Chem. Eng. 7, 101–112 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Dashtimoghadam, E., Fahimipour, F., Davaji, B., Hasani-Sadrabadi, M. & Tayebi, L. Microfluidic-directed synthesis of polymeric nanoparticles for bone cancer therapy. Dent. Mater. 1, e59–e60 (2016).


    Google Scholar
     

  • 36.

    Leong, W. & Wang, D.-A. Cell-laden polymeric microspheres for biomedical applications. Trends Biotechnol. 33, 653–666 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Saralidze, K., Koole, L. H. & Knetsch, M. L. Polymeric microspheres for medical applications. Materials 3, 3537–3564 (2010).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 38.

    Dashtimoghadam, E. et al. Rheological study and molecular dynamics simulation of biopolymer blend thermogels of tunable strength. Biomacromol 17, 3474–3484 (2016).

    CAS 

    Google Scholar
     

  • 39.

    Nienow, A. W., Rafiq, Q. A., Coopman, K. & Hewitt, C. J. A potentially scalable method for the harvesting of hMSCs from microcarriers. Biochem. Eng. J. 85, 79–88 (2014).

    CAS 

    Google Scholar
     

  • 40.

    Heathman, T. R. et al. Expansion, harvest and cryopreservation of human mesenchymal stem cells in a serum-free microcarrier process. Biotechnol. Bioeng. 112, 1696–1707 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Lim, Y. S. et al. Free flap reconstruction of head and neck defects after oncologic ablation: one surgeon’s outcomes in 42 cases. Archiv. Plast. Surg. 41, 148–152 (2014).


    Google Scholar
     

  • 42.

    Ogilvie, C. M. et al. Vascular endothelial growth factor improves bone repair in a murine nonunion model. Iowa Orthopaed. J. 32, 90 (2012).


    Google Scholar
     

  • 43.

    Beamer, B., Hettrich, C. & Lane, J. Vascular endothelial growth factor: An essential component of angiogenesis and fracture healing. HSS J. 6, 85–94 (2010).

    PubMed 

    Google Scholar
     

  • 44.

    Farokhi, M. et al. Importance of dual delivery systems for bone tissue engineering. J. Control. Release 225, 152–169 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Richardson, T. P., Peters, M. C., Ennett, A. B. & Mooney, D. J. Polymeric system for dual growth factor delivery. Nat. Biotechnol. 19, 1029 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Patel, Z. S. et al. Dual delivery of an angiogenic and an osteogenic growth factor for bone regeneration in a critical size defect model. Bone 43, 931–940 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Young, S. et al. Dose effect of dual delivery of vascular endothelial growth factor and bone morphogenetic protein-2 on bone regeneration in a rat critical-size defect model. Tissue Eng. Part A 15, 2347–2362 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Shah, N. J. et al. Tunable dual growth factor delivery from polyelectrolyte multilayer films. Biomaterials 32, 6183–6193 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Ding, Y., Floren, M. & Tan, W. Mussel-inspired polydopamine for bio-surface functionalization. Biosurf. Biotribol. 2, 121–136 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Elia, R. et al. Stimulation of in vivo angiogenesis by in situ crosslinked, dual growth factor-loaded, glycosaminoglycan hydrogels. Biomaterials 31, 4630–4638 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Tomanek, R. J., Lotun, K., Clark, E. B., Suvarna, P. R. & Hu, N. VEGF and bFGF stimulate myocardial vascularization in embryonic chick. Am. J. Physiol. Heart Circul. Physiol. 274, H1620–H1626 (1998).

    CAS 

    Google Scholar
     

  • 52.

    Davies, N. et al. The dosage dependence of VEGF stimulation on scaffold neovascularisation. Biomaterials 29, 3531–3538 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    Holland, T. A., Tabata, Y. & Mikos, A. G. Dual growth factor delivery from degradable oligo (poly (ethylene glycol) fumarate) hydrogel scaffolds for cartilage tissue engineering. J. Control. Release 101, 111–125 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 54.

    Gentile, P., Chiono, V., Carmagnola, I. & Hatton, P. V. An overview of poly (lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int. J. Mol. Sci. 15, 3640–3659 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Sabir, M. I., Xu, X. & Li, L. A review on biodegradable polymeric materials for bone tissue engineering applications. J. Mater. Sci. 44, 5713–5724 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • 56.

    Sinha, V. & Trehan, A. Biodegradable microspheres for protein delivery. J. Control. Release 90, 261–280 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 57.

    Wang, J. et al. Release of paclitaxel from polylactide-co-glycolide (PLGA) microparticles and discs under irradiation. J. Microencapsul. 20, 317–327 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    Macha, I. J. et al. Drug delivery from polymer-based nanopharmaceuticals–An experimental study complemented by a simulation of selected diffusion processes. Front. Bioeng. Biotechnol. 7, 37 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59.

    Leo, E., Cameroni, R. & Forni, F. Dynamic dialysis for the drug release evaluation from doxorubicin–gelatin nanoparticle conjugates. Int. J. Pharm. 180, 23–30 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 60.

    Lee, K. Y. & Mooney, D. J. Alginate: Properties and biomedical applications. Prog. Polym. Sci. 37, 106–126 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 61.

    Jo, S. et al. Enhanced adhesion of preosteoblasts inside 3D PCL scaffolds by polydopamine coating and mineralization. Macromol. Biosci. 13, 1389–1395 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 62.

    Zhang, J. et al. Improving osteogenesis of PLGA/HA porous scaffolds based on dual delivery of BMP-2 and IGF-1 via a polydopamine coating. RSC Adv. 7, 56732–56742 (2017).

    CAS 

    Google Scholar
     

  • 63.

    Chen, L. Enhancement in sustained release of antimicrobial peptide and BMP-2 from degradable three dimensional-printed PLGA scaffold for bone regeneration. RSC Adv. 9, 10494–10507 (2019).

    CAS 

    Google Scholar
     

  • 64.

    Zhang, Y.-G. et al. Dopamine-modified highly porous hydroxyapatite microtube networks with efficient near-infrared photothermal effect, enhanced protein adsorption and mineralization performance. Colloids Surf. B Biointerfaces 159, 337–348 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 65.

    Scarfì, S. Use of bone morphogenetic proteins in mesenchymal stem
    cell stimulation of cartilage and bone repair. World J. Stem Cells 8, 1 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 66.

    Wozney, J. M. The potential role of bone morphogenetic proteins in periodontal reconstruction. J. Periodontol. 66, 506–510 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • 67.

    Davies, S. D. & Ochs, M. W. Bone morphogenetic proteins in craniomaxillofacial surgery. Oral Maxillofac. Surg. Clin. 22, 17–31 (2010).


    Google Scholar
     

  • 68.

    Taipale, J. & Keski-Oja, J. Growth factors in the extracellular matrix. FASEB J. 11, 51–59 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • 69.

    Migliorini, E., Valat, A., Picart, C. & Cavalcanti-Adam, E. A. Tuning cellular responses to BMP-2 with material surfaces. Cytokine Growth Factor Rev. 27, 43–54 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 70.

    Schwab, E. H. et al. Nanoscale control of surface immobilized BMP-2: Toward a quantitative assessment of BMP-mediated signaling events. Nano Lett. 15, 1526–1534 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 71.

    Heathman, T. R. et al. The translation of cell-based therapies: clinical landscape and manufacturing challenges. Regener. Med. 10, 49–64 (2015).

    CAS 

    Google Scholar
     

  • 72.

    Nienow, A. W. Reactor engineering in large scale animal cell culture. Cytotechnology 50, 9–33 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 73.

    Rafiq, Q. A., Brosnan, K. M., Coopman, K., Nienow, A. W. & Hewitt, C. J. Culture of human mesenchymal stem cells on microcarriers in a 5 l stirred-tank bioreactor. Biotech. Lett. 35, 1233–1245 (2013).

    CAS 

    Google Scholar
     

  • 74.

    Farid, S.S., et al. Bioprocesses for cell therapies. In Biopharmaceutical Processing 899–930 (2018).

  • 75.

    Bernardo, M. E. et al. Optimization of in vitro expansion of human multipotent mesenchymal stromal cells for cell-therapy approaches: further insights in the search for a fetal calf serum substitute. J. Cell. Physiol. 211, 121–130 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 76.

    Fernandes, A. M. et al. Successful scale-up of human embryonic stem cell production in a stirred microcarrier culture system. Braz. J. Med. Biol. Res. 42, 515–522 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 77.

    Hewitt, C. J. et al. Expansion of human mesenchymal stem cells on microcarriers. Biotechnol. Lett. 11, 2325–2335 (2011).


    Google Scholar
     

  • 78.

    Uchida, S. et al. Vascular endothelial growth factor is expressed along with its receptors during the healing, process of bone and bone marrow after drill-hole injury in rats. Bone 32, 491–501 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 79.

    Pufe, T. et al. Quantitative measurement of the splice variants 120 and 164 of the angiogenic peptide vascular endothelial growth factor in the time flow of fracture healing: A study in the rat. Cell Tissue Res 309, 387–392 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 80.

    Cao, L. et al. Synergistic effects of dual growth factor delivery from composite hydrogels incorporating 2-N, 6-O-sulphated chitosan on bone regeneration. Artif Cells Nanomed Biotechnol 46, S1–S17 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 81.

    Jeon, O. et al. Long-term delivery enhances in vivo osteogenic efficacy of bone morphogenetic protein-2 compared to short-term delivery. Biochem. Biophys. Res. Commun. 369, 774–780 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 82.

    Barati, D. et al. Spatiotemporal release of BMP-2 and VEGF enhances osteogenic and vasculogenic differentiation of human mesenchymal stem cells and endothelial colony-forming cells co-encapsulated in a patterned hydrogel. J. Control. Release 223, 126–136 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 83.

    Liu, H. et al. Icariin immobilized electrospinning poly (l-lactide) fibrous membranes via polydopamine adhesive coating with enhanced cytocompatibility and osteogenic activity. Mater. Sci. Eng. C 79, 399–409 (2017).

    CAS 

    Google Scholar
     

  • 84.

    Kao, C.-T. et al. Poly (dopamine) coating of 3D printed poly (lactic acid) scaffolds for bone tissue engineering. Mater. Sci. Eng. C 56, 165–173 (2015).

    CAS 

    Google Scholar
     

  • 85.

    Kim, S. & Chan, B. P. Dopamine-induced mineralization of calcium carbonate vaterite microspheres. Langmuir 26(18), 14730–14736 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 86.

    Jo, S. et al. Enhanced adhesion of preosteoblasts inside 3 D PCL scaffolds by polydopamine coating and mineralization. Macromol. Biosci. 13(10), 1389–1395 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 87.

    Wang, H. et al. Mussel-inspired polydopamine coating: a general strategy to enhance osteogenic differentiation and osseointegration for diverse implants. ACS Appl. Mater. Interfaces 11(7), 7615–7625 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 88.

    Li, Z. et al. Effects of altered CXCL12/CXCR4 axis on BMP2/Smad/Runx2/Osterix axis and osteogenic gene expressions during osteogenic differentiation of MSCs. Am. J. Transl. Res. 9(4), 1680 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 89.

    Chen, D. et al. Osteoblast-specific transcription factor Osterix (Osx) and HIF-1α cooperatively regulate gene expression of vascular endothelial growth factor (VEGF). Biochem. Biophys. Res. Commun. 1, 176–181 (2012).


    Google Scholar
     

  • 90.

    Talavera-Adame, D. et al. Endothelial cells in co-culture enhance embryonic stem cell differentiation to pancreatic progenitors and insulin-producing cells through BMP signaling. Stem Cell Rev. Rep. 7, 532–543 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 91.

    Geuze, L. F. et al. A differential effect of bone morphogenetic protein-2 and vascular endothelial growth factor release timing on osteogenesis at ectopic and orthotopic sites in a large-animal model. Tissue Eng. Part A 18, 2052–2062 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 92.

    Kakudo, K. et al. Immunolocalization of vascular endothelial growth factor on intramuscular ectopic osteoinduction by bone morphogenetic protein-2. Life Sci. 79, 1847–1855 (2006).

    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *