Molecular hydrogen in minerals as a clue to interpret ∂D variations in the mantle


  • 1.

    Clesi, V. et al. Effect of H2O on metal–silicate partitioning of Ni, Co, V, Cr, Mn and Fe: implications for the oxidation state of the Earth and Mars. Geochim. Cosmochim. Acta 192, 97–121, https://doi.org/10.1016/j.gca.2016.07.029 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 2.

    Füri, E., Deloule, E., Gurenko, A. & Marty, B. New evidence for chondritic lunar water from combined D/H and noble gas analyses of single Apollo 17 volcanic glasses. Icarus 229, 109–120, https://doi.org/10.1016/j.icarus.2013.10.029 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 3.

    Hirschmann, M. M., Withers, A. C., Ardia, P. & Foley, N. T. Solubility of molecular hydrogen in silicate melts and consequences for volatile evolution of terrestrial planets. Earth Planet. Sci. Lett. 345-348, 38–48, https://doi.org/10.1016/j.epsl.2012.06.031 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 4.

    Peslier, A. H., Schönbächler, M., Busemann, H. & Karato, S.-I. Water in the Earth’s interior: distribution and origin. Space Sci. Rev. 210, 1–68 (2017).

    Article 

    Google Scholar
     

  • 5.

    Jacobsen, S. D. Effect of water on the equation of state of nominally anhydrous minerals. Rev. Mineral. Geochem. 62, 321–342, https://doi.org/10.2138/rmg.2006.62.14 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Marty, B. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313-314, 56–66, https://doi.org/10.1016/j.epsl.2011.10.040 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 7.

    Férot, A. & Bolfan-Casanova, N. Water storage capacity in olivine and pyroxene to 14 GPa: implications for the water content of the Earth’s upper mantle and nature of seismic discontinuities. Earth Planet. Sci. Lett. 349-350, 218–230, https://doi.org/10.1016/j.epsl.2012.06.022 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 8.

    Smyth, J. R. Hydrogen in high pressure silicate and oxide mineral structures. Rev. Mineral. Geochem. 62, 85–115, https://doi.org/10.2138/rmg.2006.62.5 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Bell, D. R. & Rossman, G. R. Water in Earth’s mantle: the role of nominally anhydrous minerals. Science 255, 1391 (1992).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 10.

    Demouchy, S. & Bolfan-Casanova, N. Distribution and transport of hydrogen in the lithospheric mantle: a review. Lithos 240-243, 402–425, https://doi.org/10.1016/j.lithos.2015.11.012 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 11.

    Pearson, D. G. et al. Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 507, 221, https://doi.org/10.1038/nature13080 (2014).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 12.

    Aulbach, S. et al. Evidence for a dominantly reducing Archaean ambient mantle from two redox proxies, and low oxygen fugacity of deeply subducted oceanic crust. Sci. Rep. 9, 20190, https://doi.org/10.1038/s41598-019-55743-1 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Goncharov, A. G., Ionov, D. A., Doucet, L. S. & Pokhilenko, L. N. Thermal state, oxygen fugacity and COH fluid speciation in cratonic lithospheric mantle: new data on peridotite xenoliths from the Udachnaya kimberlite, Siberia. Earth Planet. Sci. Lett. 357-358, 99–110, https://doi.org/10.1016/j.epsl.2012.09.016 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 14.

    Woodland, A. B. & Koch, M. Variation in oxygen fugacity with depth in the upper mantle beneath the Kaapvaal craton, Southern Africa. Earth Planet. Sci. Lett. 214, 295–310, https://doi.org/10.1016/S0012-821X(03)00379-0 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 15.

    McCammon, C. A. & Frost, D. J. The effect of oxygen fugacity on the olivine to wadsleyite transformation: implications for remote sensing of mantle redox state at the 410 km seismic discontinuity. Am. Mineral. 94, 872–882, https://doi.org/10.2138/am.2009.3094 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 16.

    Yang, X. Effect of oxygen fugacity on OH dissolution in olivine under peridotite-saturated conditions: an experimental study at 1.5–7 GPa and 1100–1300 °C. Geochim. Cosmochim. Acta 173, 319–336, https://doi.org/10.1016/j.gca.2015.11.007 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 17.

    Yang, X., Keppler, H. & Li, Y. Molecular hydrogen in mantle minerals. Geochem. Perspect. Lett., 160–168, https://doi.org/10.7185/geochemlet.1616 (2016).

  • 18.

    Radu, I. B., Harris, C., Moine, B. N., Costin, G. & Cottin, J. Y. Subduction relics in the subcontinental lithospheric mantle, evidence from ∂18O variations in eclogite xenoliths from the Kaapvaal craton. Contrib. Miner. Petrol. 174, https://doi.org/10.1007/s00410-019-1552-z (2019).

  • 19.

    Gong, B., Zheng, Y.-F. & Chen, R.-X. An online method combining a thermal conversion elemental analyzer with isotope ratio mass spectrometry for the determination of hydrogen isotope composition and water concentration in geological samples. Rapid Commun. Mass Spectrom. 21, 1386–1392, https://doi.org/10.1002/rcm.2973 (2007).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 20.

    Sharp, Z. D., Atudorei, V. & Durakiewicz, T. A rapid method for determination of hydrogen and oxygen isotope ratios from water and hydrous minerals. Chem. Geol. 178, 197–210, https://doi.org/10.1016/S0009-2541(01)00262-5 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 21.

    Chen, R.-X., Zheng, Y.-F. & Gong, B. Mineral hydrogen isotopes and water contents in ultrahigh-pressure metabasite and metagranite: constraints on fluid flow during continental subduction-zone metamorphism. Chem. Geol. 281, 103–124, https://doi.org/10.1016/j.chemgeo.2010.12.002 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 22.

    Katayama, I., Nakashima, S. & Yurimoto, H. Water content in natural eclogite and implication for water transport into the deep upper mantle. Lithos 86, 245–259, https://doi.org/10.1016/j.lithos.2005.06.006 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 23.

    Smyth, J. R., Bell, D. R. & Rossman, G. R. Incorporation of hydroxyl in upper-mantle clinopyroxenes. Nature 351, 732–735, https://doi.org/10.1038/351732a0 (1991).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 24.

    Doucet, L. S. et al. High water contents in the Siberian cratonic mantle linked to metasomatism: an FTIR study of Udachnaya peridotite xenoliths. Geochim. Cosmochim. Acta 137, 159–187, https://doi.org/10.1016/j.gca.2014.04.011 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 25.

    Peslier, A. H., Schönbächler, M., Busemann, H. & Karato, S.-I. Water in the Earth’s interior: distribution and origin. Space Sci. Rev. 212, 743–810, https://doi.org/10.1007/s11214-017-0387-z (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 26.

    Allègre, C. J. & Turcotte, D. L. Implications of a two-component marble-cake mantle. Nature 323, 123, https://doi.org/10.1038/323123a0 (1986).

    ADS 
    Article 

    Google Scholar
     

  • 27.

    Newman, S., Stolper, E. M. & Epstein, S. Measurement of water in rhyolitic glasses; calibration of an infrared spectroscopic technique. Am. Mineral. 71, 1527–1541 (1986).

    CAS 

    Google Scholar
     

  • 28.

    Kovács, I. et al. Water concentrations and hydrogen isotope compositions of alkaline basalt-hosted clinopyroxene megacrysts and amphibole clinopyroxenites: the role of structural hydroxyl groups and molecular water. Contrib. Miner. Petrol. 171, https://doi.org/10.1007/s00410-016-1241-0 (2016).

  • 29.

    Su, W., You, Z., Cong, B., Ye, K. & Zhong, Z. Cluster of water molecules in garnet from ultrahigh-pressure eclogite. Geology 30, 611–614, https://doi.org/10.1130/0091-7613(2002)030<0611:cowmig>2.0.co;2 (2002).

  • 30.

    Xu, Z., Zheng, Y.-F., Zhao, Z.-F. & Gong, B. The hydrous properties of subcontinental lithospheric mantle: constraints from water content and hydrogen isotope composition of phenocrysts from Cenozoic continental basalt in North China. Geochim. Cosmochim. Acta 143, 285–302, https://doi.org/10.1016/j.gca.2013.12.025 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 31.

    Gong, B., Zheng, Y.-F. & Chen, R.-X. TC/EA-MS online determination of hydrogen isotope composition and water concentration in eclogitic garnet. Phys. Chem. Miner. 34, 687–698, https://doi.org/10.1007/s00269-007-0184-4 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 32.

    Bartholomew, R. F., Butler, B. L., Hoover, H. L. & Wu, C. K. Infrared spectra of a water-containing glass. J. Am. Ceram. Soc. 63, 481–485, https://doi.org/10.1111/j.1151-2916.1980.tb10748.x (1980).

    CAS 
    Article 

    Google Scholar
     

  • 33.

    Shelby, J. E. Protonic species in vitreous silica. J. Non-Cryst. Solids 179, 138–147 (1994).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 34.

    Koch-Müller, M., Abs-Wurmbach, I., Rhede, D., Kahlenberg, V. & Matsyuk, S. Dehydration experiments on natural omphacites: qualitative and quantitative characterization by various spectroscopic methods. Phys. Chem. Miner. 34, 663–678, https://doi.org/10.1007/s00269-007-0181-7 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 35.

    Ishiyama, D., Shinoda, K., Shimizu, T., Matsubaya, O. & Aikawa, N. Structural states and isotopic compositions of water in hydrothermal quartz, Koryu Deposit, Japan. Econ. Geol. 94, 1347–1351, https://doi.org/10.2113/gsecongeo.94.8.1347 (1999).

    CAS 
    Article 

    Google Scholar
     

  • 36.

    Vennemann, T. W. & O’Neil, J. R. Hydrogen isotope exchange reactions between hydrous minerals and molecular hydrogen: I. a new approach for the determination of hydrogen isotope fractionation at moderate temperatures. Geochim. Cosmochim. Acta 60, 2437–2451, https://doi.org/10.1016/0016-7037(96)00103-2 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 37.

    Sheng, Y.-M. & Gong, B. Hydrous species in eclogitic omphacite: implication for metamorphic dehydration during exhumation. J. Asian Earth Sci. 145, 123–129, https://doi.org/10.1016/j.jseaes.2016.12.020 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 38.

    Bali, E., Audétat, A. & Keppler, H. Water and hydrogen are immiscible in Earth’s mantle. Nature 495, 220–222, https://doi.org/10.1038/nature11908 (2013).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 39.

    Peslier, A. H., Luhr, J. F. & Post, J. Low water contents in pyroxenes from spinel-peridotites of the oxidized, sub-arc mantle wedge. Earth Planet. Sci. Lett. 201, 69–86, https://doi.org/10.1016/S0012-821X(02)00663-5 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 40.

    Skogby, H. O. H. incorporation in synthetic clinopyroxene. Am. Mineral. 79, 240–249 (1994).

    CAS 

    Google Scholar
     

  • 41.

    Demouchy, S. Diffusion of hydrogen in olivine grain boundaries and implications for the survival of water-rich zones in the Earth’s mantle. Earth Planet. Sci. Lett. 295, 305–313, https://doi.org/10.1016/j.epsl.2010.04.019 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 42.

    Hercule, S. & Ingrin, J. Hydrogen in diopside; diffusion, kinetics of extraction-incorporation, and solubility. Am. Mineral. 84, 1577–1587, https://doi.org/10.2138/am-1999-1011 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 43.

    Shang, L., Chou, I. M., Lu, W., Burruss, R. C. & Zhang, Y. Determination of diffusion coefficients of hydrogen in fused silica between 296 and 523K by Raman spectroscopy and application of fused silica capillaries in studying redox reactions. Geochim. Cosmochim. Acta 73, 5435–5443, https://doi.org/10.1016/j.gca.2009.06.001 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 44.

    Lee, R. W. Diffusion of hydrogen in natural and synthetic fused quartz. J. Chem. Phys. 38, 448–455, https://doi.org/10.1063/1.1733679 (1963).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 45.

    Schmid, R. et al. Micro-XANES determination of ferric iron and its application in thermobarometry. Lithos 70, 381–392, https://doi.org/10.1016/S0024-4937(03)00107-5 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 46.

    Gaillard, F., Schmidt, B., Mackwell, S. & McCammon, C. Rate of hydrogen–iron redox exchange in silicate melts and glasses. Geochim. Cosmochim. Acta 67, 2427–2441, https://doi.org/10.1016/S0016-7037(02)01407-2 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 47.

    Clog, M., Aubaud, C., Cartigny, P. & Dosso, L. The hydrogen isotopic composition and water content of southern Pacific MORB: a reassessment of the D/H ratio of the depleted mantle reservoir. Earth Planet. Sci. Lett. 381, 156–165, https://doi.org/10.1016/j.epsl.2013.08.043 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 48.

    Hallis, L. J. et al. Evidence for primordial water in Earth’s deep mantle. Science 350, 795 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 49.

    Satake, H. & Matsuda, J. i. Strontium and hydrogen isotope geochemistry of fresh and metabasalt dredged from the Mid-Atlantic Ridge. Contrib. Mineral. Petrol. 70, 153–157, https://doi.org/10.1007/BF00374444 (1979).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 50.

    Sheppard, S. M. F. & Epstein, S. D/H and 18O/16O ratios of minerals of possible mantle or lower crustal origin. Earth Planet. Sci. Lett. 9, 232–239 (1970).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 51.

    Wenner, D. B. & Taylor, H. P. D/H and O18/O16 studies of serpentinization of ultramaflc rocks. Geochim. Cosmochim. Acta 38, 1255–1286, https://doi.org/10.1016/0016-7037(74)90120-3 (1974).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 52.

    Graham, C. M., Harmon, R. S. & Sheppard, S. M. F. Experimental hydrogen isotope studies: hydrogen isotope exchange between amphibole and water. Am. Miner. 69, 128–138 (1984).

    CAS 

    Google Scholar
     

  • 53.

    Suzuoki, T. & Epstein, S. Hydrogen isotope fractionation between OH-bearing minerals and water. Geochim. Cosmochim. Acta 40, 1229–1240, https://doi.org/10.1016/0016-7037(76)90158-7 (1976).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 54.

    Shaw, A. M., Hauri, E. H., Fischer, T. P., Hilton, D. R. & Kelley, K. A. Hydrogen isotopes in Mariana arc melt inclusions: implications for subduction dehydration and the deep-Earth water cycle. Earth Planet. Sci. Lett. 275, 138–145, https://doi.org/10.1016/j.epsl.2008.08.015 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 55.

    Ito, E., Harris, D. M. & Anderson, A. T. J. Alteration of oceanic crust and geologic cycling of chlorine and water. Geochim. Cosmochim. Acta 47, 1613–1624 (1983).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 56.

    Peacock, S. M. Fluid processes in subduction zones. Science 248, 329–337 (1990).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 57.

    Richet, P., Bottinga, Y. & Javoy, M. A review of hydrogen, carbon, nitrogen, oxygen, sulphur, and chlorine stable isotope fractionation among gaseous molecules. Annu. Rev. Earth Planet. Sci. 5, 65–110, https://doi.org/10.1146/annurev.ea.05.050177.000433 (1977).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 58.

    Peslier, A. H., Woodland, A. B. & Wolff, J. A. Fast kimberlite ascent rates estimated from hydrogen diffusion profiles in xenolithic mantle olivines from southern Africa. Geochim. Cosmochim. Acta 72, 2711–2722, https://doi.org/10.1016/j.gca.2008.03.019 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 59.

    Sharp, Z. D., McCubbin, F. M. & Shearer, C. K. A hydrogen-based oxidation mechanism relevant to planetary formation. Earth Planet. Sci. Lett. 380, 88–97, https://doi.org/10.1016/j.epsl.2013.08.015 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 60.

    Kuroda, Y., Suzuoki, T., Matsuo, S. & Aoki, K. I. D/H ratios of the coexisting phlogopite and richterite from mica nodules and a peridotite in South African kimberlites. Contrib. Mineral. Petrol. 52, 315–318, https://doi.org/10.1007/BF00401460 (1975).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 61.

    Mysen, B. Hydrogen isotope fractionation and redox-controlled solution mechanisms in silicate-COH melt+fluid systems. J. Geophys. Res.: Solid Earth 120, 7440–7459, https://doi.org/10.1002/2015JB011954 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 62.

    Qi, H., Coplen, T. B., Olack, G. A. & Vennemann, T. W. Caution on the use of NBS 30 biotite for hydrogen-isotope measurements with on-line high-temperature conversion systems. Rapid Commun. Mass Spectrom. 28, 1987–1994, https://doi.org/10.1002/rcm.6983 (2014).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 63.

    Coplen, T. B. Reporting of stable hydrogen, carbon, and oxygen isotopic abundances. Geothermics 24, 707–712, https://doi.org/10.1016/0375-6505(95)00024-0 (1995).

    Article 

    Google Scholar
     

  • 64.

    Bigeleisen, J., Perlman, M. L. & Prosser, H. C. Conversion of hydrogenic materials to hydrogen for isotopic analysis. Anal. Chem. 24, 1356–1357 (1952).

    CAS 
    Article 

    Google Scholar
     

  • 65.

    Kovács, I. N. et al. Quantitative absorbance spectroscopy with unpolarized light: Part II. Experimental evaluation and development of a protocol for quantitative analysis of mineral IR spectra. Am. Mineral. 93, 765–778, https://doi.org/10.2138/am.2008.2656 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 66.

    Xia, Q.-K., Dallai, L. & Deloule, E. Oxygen and hydrogen isotope heterogeneity of clinopyroxene megacrysts from Nushan Volcano, SE China. Chem. Geol. 209, 137–151, https://doi.org/10.1016/j.chemgeo.2004.04.028 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 67.

    Ravna, K. The garnet–clinopyroxene Fe2+–Mg geothermometer: an updated calibration. J. Metamorph. Geol. 18, 211–219, https://doi.org/10.1046/j.1525-1314.2000.00247.x (2000).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 68.

    Pollack, H. N. & Chapman, D. S. Mantle heat flow. Earth Planet. Sci. Lett. 34, 174–184, https://doi.org/10.1016/0012-821X(77)90002-4 (1977).

    ADS 
    Article 

    Google Scholar
     

  • 69.

    Griffin, W., O’Reilly, S. Y., Natapov, L. M. & Ryan, C. G. The evolution of lithospheric mantle beneath the Kalahari Craton and its margins. Lithos 71, 215–241, https://doi.org/10.1016/j.lithos.2003.07.006 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 70.

    Ionov, D. A., Doucet, L. S., Xu, Y., Golovin, A. V. & Oleinikov, O. B. Reworking of Archean mantle in the NE Siberian craton by carbonatite and silicate melt metasomatism: evidence from a carbonate-bearing, dunite-to-websterite xenolith suite from the Obnazhennaya kimberlite. Geochim. Cosmochim. Acta 224, 132–153, https://doi.org/10.1016/j.gca.2017.12.028 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *