More frequent and widespread persistent compound drought and heat event observed in China


  • 1.

    Wang, J. et al. Anthropogenically-driven increases in the risks of summertime compound hot extremes. Nat. Commun. 11(1), 528 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Fischer, E. M. & Knutti, R. Detection of spatially aggregated changes in temperature and precipitation extremes. Geophys. Res. Lett. 41(2), 547–554 (2014).

    ADS 

    Google Scholar
     

  • 3.

    Alexander, L. V. et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos. 111(D5), 1042–1063 (2006).


    Google Scholar
     

  • 4.

    Forootan, E. et al. Understanding the global hydrological droughts of 2003–2016 and their relationships with teleconnections. Sci. Total. Environ. 650, 2587–2604 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Mueller, B. & Seneviratne, S. I. Hot days induced by precipitation deficits at the global scale. Proc. Natl. Acad. Sci. 109(31), 12398–12403 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Shi, J., Cui, L., Ma, Y., Du, H. & Wen, K. Trends in temperature extremes and their association with circulation patterns in China during 1961–2015. Atmos. Res. 212, 259–272 (2018).

    CAS 

    Google Scholar
     

  • 7.

    Yu, R., Zhai, P. M. & Lu, Y. Y. Implications of differential effects between 1.5 and 2°C global warming on temperature and precipitation extremes in China’s urban agglomerations. Int. J. Climatol. 38, 2374–2385 (2018).


    Google Scholar
     

  • 8.

    Sun, P., Zhang, Q., Wen, Q. Z., Singh, V. P. & Shi, P. J. Multisource data-based integrated agricultural drought monitoring in the Huai River Basin China. J. Geophys. Res. Atmos. 122, 10–751 (2017).


    Google Scholar
     

  • 9.

    Wang, L., Chen, W., Zhou, W. & Huang, G. Understanding and detecting super extreme droughts in southwest China through an integrated approach and index. Q. J. R. Meteorol. Soc. 142(694), 529–535 (2016).

    ADS 

    Google Scholar
     

  • 10.

    Wang, W. W., Zhou, W., Li, X. Z., Wang, X. & Wang, D. X. Synoptic-scale characteristics and atmospheric controls of summer heat waves in China. Clim. Dyn. 46, 2923–2941. https://doi.org/10.1007/s00382-015-2741-8 (2016).

    Article 

    Google Scholar
     

  • 11.

    Wang, L., Chen, W. & Zhou, W. Assessment of future drought in Southwest China based on CMIP5 multimodel projections. Adv. Atmos. Sci. 31, 1035–1050 (2014).


    Google Scholar
     

  • 12.

    Vogel, M. M., Zscheischler, J., Wartenburger, R., Dee, D. & Seneviratne, S. I. Concurrent 2018 hot extremes across Northern Hemisphere due to human-induced climate change. Earth’s Future. 7, 692–703 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Aghakouchak, A., Cheng, L. Y., Mazdiyasni, O. & Farahmand, A. Global warming and changes in risk of concurrent climate extremes: insights from the 2014 California drought. Geophys. Res. Lett. 41(24), 8847–8852 (2014).

    ADS 

    Google Scholar
     

  • 14.

    Fink, A. H. et al. The 2003 European summer heatwaves and drought?. Synop. Diagn. Impacts Weather 59(8), 209–216 (2010).


    Google Scholar
     

  • 15.

    Mangani, R., Tesfamariam, E., Bellocchi, G. & Hassen, A. Modelled impacts of extreme heat and drought on maize yield in South Africa. Crop Pasture Sci. 69, 703–716 (2018).


    Google Scholar
     

  • 16.

    Zscheischler, J. et al. Future climate risk from compound events. Nat. Clim. Change 8, 469–477 (2018).

    ADS 

    Google Scholar
     

  • 17.

    Russo, A., Gouveia, C. M. & Dutra, E. The synergy between drought and extremely hot summers in the Mediterranean. Environ. Res. Lett. 14, 014011 (2019).

    ADS 

    Google Scholar
     

  • 18.

    Hao, Z. C., Hao, F. H., Singh, V. P. & Zhang, X. Changes in the severity of compound drought and hot extremes over global land areas. Environ. Res. Lett. 13, 124022 (2018).


    Google Scholar
     

  • 19.

    Lyon, B. Southern Africa summer drought and heat waves: observations and coupled model behavior. J. Clim. 22, 6033–6046 (2009).

    ADS 

    Google Scholar
     

  • 20.

    Mazdiyasni, O. & Aghakouchak, A. Substantial increase in concurrent droughts and heatwaves in the United States. Proc. Natl. Acad. Sci. 112(37), 11484–11489 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Albright, T. P. et al. Combined effects of heat waves and droughts on avian communities across the conterminous United States. Ecosphere 1(5), 1–22 (2010).


    Google Scholar
     

  • 22.

    Li, X. et al. Concurrent droughts and hot extremes in northwest China from 1961 to 2017. Int. J. Climatol. 39, 2186–2196 (2019).


    Google Scholar
     

  • 23.

    Lu, Y., Hu, H. C., Li, C. & Tian, F. Q. Increasing compound events of extreme hot and dry days during growing seasons of wheat and maize in China. Sci. Rep. 8, 16700 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Kong, Q. Q. et al. Increases in summertime concurrent drought and heatwave in Eastern China. Weather Clim. Extremes 28, 100242 (2020).


    Google Scholar
     

  • 25.

    Feng, S. F., Hao, Z. C., Zhang, X. & Hao, F. H. Probabilistic evaluation of the impact of compound dry-hot events on global maize yields. Sci. Total Environ. 389, 1228–1234 (2019).

    ADS 

    Google Scholar
     

  • 26.

    Sedlmeier, K., Feldmann, H. & Schädler, G. Compound summer temperature and precipitation extremes over central Europe. Theor. Appl. Climatol. 131(24), 1493–1501 (2017).

    ADS 

    Google Scholar
     

  • 27.

    Wang, S., Yuan, X. & Wu, R. Attribution of the persistent spring-summer hot and dry extremes over northeast China in 2017. Bull. Am. Meteorol. Soc. 100(1), S85–S89 (2019).

    ADS 

    Google Scholar
     

  • 28.

    Zscheischler, J. & Seneviratne, S. I. Dependence of drivers affects risks associated with compound events. Sci. Adv. 3, e1700263 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Schubert, S. D., Wang, H., Koster, R. D. & Suarez, M. J. Northern Eurasian heat waves and droughts. J. Clim. 27(9), 3169–3207 (2014).

    ADS 

    Google Scholar
     

  • 30.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China & China National Standardization Administration. GB /T 20481-2017 Grades of meteorological drought [ed. Zhang X. J. et al., S.] 5 (China Standard Press, 2017).

  • 31.

    Liao, Y. M. & Zhang, C. J. Spatio-temporal distribution characteristics and disaster change of drought in China based on meteorological drought composite index. Meteorol. Mon. 43(11), 1402–1409 (2017).


    Google Scholar
     

  • 32.

    Zolina, O., Simmer, C., Gulev, S. K. & Kollet, S. Changing structure of European precipitation: longer wet periods leasing to stronger extremes. Geophys. Res. Lett. 37(6), 460–472 (2010).


    Google Scholar
     

  • 33.

    Chen, Y. & Zhai, P. M. Changing structure of wet periods across southwest China during 1961–2012. Clim. Res. 61(2), 123–131 (2014).


    Google Scholar
     

  • 34.

    Zhai, P. M., Zhang, X. B., Wan, H. & Pan, X. H. Trends in total precipitation and frequency of daily precipitation extremes over China. J. Clim. 18(7), 1096–1108 (2005).

    ADS 

    Google Scholar
     

  • 35.

    Wu, X., Hao, Z., Hao, F. & Zhang, X. Variations of compound precipitation and temperature extremes in China during 1961–2014. Sci. Total Environ. 663, 731–737 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Wang, Y., Ren, F. & Zhang, X. Spatial and temporal variations of regional high temperature events in China. Int. J. Climatol. 34(10), 3054–3065 (2014).


    Google Scholar
     

  • 37.

    Zhang, H. Y., Wu, C. H. & Hu, B. X. Recent intensification of short-term concurrent hot and dry extremes over the Pearl River basin China. Int. J. Climatol. https://doi.org/10.1002/joc.6116 (2019).

    Article 

    Google Scholar
     

  • 38.

    Li, M. X. & Ma, Z. G. Decadal changes in summer precipitation over arid northwest China and associated atmospheric circulation. Int. J. Climatol. 38, 4496–4508 (2018).


    Google Scholar
     

  • 39.

    Wang, L. J. et al. Increasing concurrent dought and heat in Huang-Huai-Hai Plain China. Int. J. Climatol. 38, 3177–3190 (2018).


    Google Scholar
     

  • 40.

    Ding, T. & Qian, W. Geographical patterns and temporal variations of regional dry and wet heatwave events in China during 1960–2008. Adv. Atmos. Sci. 28(2), 322–337 (2011).


    Google Scholar
     

  • 41.

    Zhou, T., Ma, S. & Zou, L. Understanding a hot summer in central eastern China: summer 2013 in context of multimodel trend analysis. Bull. Am. Meteorol. Soc. 95, S54 (2014).


    Google Scholar
     

  • 42.

    Wang, W. W. et al. Statistical modeling and CMIP5 simulations of hot spell changes in China. Clim. Dyn. 44, 2859–2872. https://doi.org/10.1007/s00382-014-2287-1 (2015).

    Article 

    Google Scholar
     

  • 43.

    Wang, M., Gu, Q., Jia, X. J. & Ge, J. W. An assessment of the impact of Pacific decadal oscillation on autumn droughts in North China based on the Palmer drought severity index. Int. J. Climatol. 39(14), 5338–5350 (2019).


    Google Scholar
     

  • 44.

    Shi, J. et al. Trends in the consecutive days of temperature and precipitation extremes in China during 1961–2015. Environ. Res. 161, 381–391 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Liu, J. & Zhai, P. M. Changes in climate regionalization indices in China during 1961–2010. Adv. Atmos. Sci. 31(2), 374–384 (2014).

    CAS 

    Google Scholar
     

  • 46.

    Zhang, J., Li, L., Wu, Z. W. & Li, X. M. Prolonged dry spells in recent decades over north-central China and their association with a northward shift in planetary waves. Int. J. Climatol. 35(15), 4829–4842 (2015).


    Google Scholar
     

  • 47.

    Koster, R. D. et al. Flash drought as captured by reanalysis data: disentangling the contributions of precipitation deficit and excess evapotranspiration. J. Hydrometeorol. 20(6), 1241–1258 (2019).

    ADS 

    Google Scholar
     

  • 48.

    Manning, C. et al. A Multivariate Description of Compound Events of Meteorological Drought and Heat Waves[C]//EGU General Assembly Conference Abstracts. 19, 17118 (2017).

  • 49.

    Miralles, D. G., Gentine, P., Seneviratne, S. I. & Teuling, A. J. Land-atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges. Ann. N. Y. Acad. Sci. 1436(1), 19 (2019).

    ADS 
    PubMed 

    Google Scholar
     

  • 50.

    Xu, W. H. et al. Homogenization of Chinese daily surface air temperatures and analysis of trends in the extreme temperature indices. J. Geophys. Res. Atmos. 118(17), 9708–9720 (2013).

    ADS 

    Google Scholar
     

  • 51.

    Zhai, P. M. et al. The strong El Nino of 2015/16 and its dominant impacts on global and China’s climate. J. Meteor. Res. 30(3), 283–297 (2016).


    Google Scholar
     

  • 52.

    Li, Q. X. et al. China experiences the recent warming hiatus. Geophys. Res. Lett. 42(3), 889–898 (2015).

    ADS 

    Google Scholar
     

  • 53.

    Guttman, N. B. Accepting the standardized precipitation index: a calculation algorithm. J. Am. Water Resour. Assoc. 35, 311–322. https://doi.org/10.1111/j.1752-1688.1999.tb03592.x (1999).

    ADS 
    Article 

    Google Scholar
     

  • 54.

    Palmer, W. C. Meteorological Drought. Research Paper No. 45, US Weather Bureau, Washington, DC (1965).

  • 55.

    Song, S. Y. Tebet Climete (ed.Song, S. Y) 147 (China Meteorolocial Press, 2013).

  • 56.

    Sun, C. X. et al. Drought occurring with hot extremes: changes under future climate change on Loess Plateau, China. Earth’s Future 7(6), 587–604 (2019).

    ADS 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *