Multiplexed detection and isolation of viable low-frequency cytokine-secreting human B cells using cytokine secretion assay and flow cytometry (CSA-Flow)


  • 1.

    Giladi, A. & Amit, I. Single-cell genomics: a stepping stone for future immunology discoveries. Cell 172, 14–21. https://doi.org/10.1016/j.cell.2017.11.011 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 2.

    Chappell, L., Russell, A. J. C. & Voet, T. Single-cell (Multi)omics technologies. Annu. Rev. Genomics Hum. Genet. 19, 15–41. https://doi.org/10.1146/annurev-genom-091416-035324 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 3.

    Papalexi, E. & Satija, R. Single-cell RNA sequencing to explore immune cell heterogeneity. Nat. Rev. Immunol. 18, 35–45. https://doi.org/10.1038/nri.2017.76 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 4.

    Efremova, M., Vento-Tormo, R., Park, J. E., Teichmann, S. A. & James, K. R. Immunology in the era of single-cell technologies. Annu. Rev. Immunol. 38, 727–757. https://doi.org/10.1146/annurev-immunol-090419-020340 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 5.

    Uhlen, M. et al. A genome-wide transcriptomic analysis of protein-coding genes in human blood cells. Science https://doi.org/10.1126/science.aax9198 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • 6.

    Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942. https://doi.org/10.1038/s41590-019-0378-1 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Arazi, A. et al. The immune cell landscape in kidneys of patients with lupus nephritis. Nat. Immunol. 20, 902–914. https://doi.org/10.1038/s41590-019-0398-x (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Schafflick, D. et al. Integrated single cell analysis of blood and cerebrospinal fluid leukocytes in multiple sclerosis. Nat. Commun. 11, 247. https://doi.org/10.1038/s41467-019-14118-w (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Davis, M. M. & Brodin, P. Rebooting human immunology. Annu. Rev. Immunol. 36, 843–864. https://doi.org/10.1146/annurev-immunol-042617-053206 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Murray, P. J. et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14–20. https://doi.org/10.1016/j.immuni.2014.06.008 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Sallusto, F. Heterogeneity of human CD4(+) T cells against microbes. Annu. Rev. Immunol. 34, 317–334. https://doi.org/10.1146/annurev-immunol-032414-112056 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 12.

    Shen, P. & Fillatreau, S. Antibody-independent functions of B cells: a focus on cytokines. Nat. Rev. Immunol. 15, 441–451. https://doi.org/10.1038/nri3857 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 13.

    Provine, N. M. & Klenerman, P. MAIT cells in health and disease. Annu. Rev. Immunol. 38, 203–228. https://doi.org/10.1146/annurev-immunol-080719-015428 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 14.

    Vivier, E. et al. Innate lymphoid cells: 10 years on. Cell 174, 1054–1066. https://doi.org/10.1016/j.cell.2018.07.017 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 15.

    DuPage, M. & Bluestone, J. A. Harnessing the plasticity of CD4(+) T cells to treat immune-mediated disease. Nat. Rev. Immunol. 16, 149–163. https://doi.org/10.1038/nri.2015.18 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 16.

    Bal, S. M., Golebski, K. & Spits, H. Plasticity of innate lymphoid cell subsets. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-020-0282-9 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • 17.

    Haque, A., Engel, J., Teichmann, S. A. & Lonnberg, T. A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Med. 9, 75. https://doi.org/10.1186/s13073-017-0467-4 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Rosenberg, S. A. & Restifo, N. P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348, 62–68. https://doi.org/10.1126/science.aaa4967 (2015).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Arrigucci, R. et al. FISH-Flow, a protocol for the concurrent detection of mRNA and protein in single cells using fluorescence in situ hybridization and flow cytometry. Nat. Protoc. 12, 1245–1260. https://doi.org/10.1038/nprot.2017.039 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Duckworth, A. D. et al. Multiplexed profiling of RNA and protein expression signatures in individual cells using flow or mass cytometry. Nat. Protoc. 14, 901–920. https://doi.org/10.1038/s41596-018-0120-8 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Lamoreaux, L., Roederer, M. & Koup, R. Intracellular cytokine optimization and standard operating procedure. Nat. Protoc. 1, 1507–1516. https://doi.org/10.1038/nprot.2006.268 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 22.

    Porichis, F. et al. High-throughput detection of miRNAs and gene-specific mRNA at the single-cell level by flow cytometry. Nat. Commun. 5, 5641. https://doi.org/10.1038/ncomms6641 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Frei, A. P. et al. Highly multiplexed simultaneous detection of RNAs and proteins in single cells. Nat. Methods 13, 269–275. https://doi.org/10.1038/nmeth.3742 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Hrvatin, S., Deng, F., O’Donnell, C. W., Gifford, D. K. & Melton, D. A. MARIS: method for analyzing RNA following intracellular sorting. PLoS ONE 9, e89459. https://doi.org/10.1371/journal.pone.0089459 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Amamoto, R. et al. Probe-Seq enables transcriptional profiling of specific cell types from heterogeneous tissue by RNA-based isolation. Elife https://doi.org/10.7554/eLife.51452 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Galli, E. et al. GM-CSF and CXCR4 define a T helper cell signature in multiple sclerosis. Nat. Med. 25, 1290–1300. https://doi.org/10.1038/s41591-019-0521-4 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Rauch, P. J. et al. Innate response activator B cells protect against microbial sepsis. Science 335, 597–601. https://doi.org/10.1126/science.1215173 (2012).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Noster, R. et al. IL-17 and GM-CSF expression are antagonistically regulated by human T helper cells. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.3008706 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • 29.

    Gagliani, N. et al. Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells. Nat. Med. 19, 739–746. https://doi.org/10.1038/nm.3179 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 30.

    Blair, P. A. et al. CD19(+)CD24(hi)CD38(hi) B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic Lupus Erythematosus patients. Immunity 32, 129–140. https://doi.org/10.1016/j.immuni.2009.11.009 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 31.

    Matsumoto, M. et al. Interleukin-10-producing plasmablasts exert regulatory function in autoimmune inflammation. Immunity 41, 1040–1051. https://doi.org/10.1016/j.immuni.2014.10.016 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 32.

    Iwata, Y. et al. Characterization of a rare IL-10-competent B-cell subset in humans that parallels mouse regulatory B10 cells. Blood 117, 530–541. https://doi.org/10.1182/blood-2010-07-294249 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    van de Veen, W. et al. IgG4 production is confined to human IL-10-producing regulatory B cells that suppress antigen-specific immune responses. J. Allergy Clin. Immunol. 131, 1204–1212. https://doi.org/10.1016/j.jaci.2013.01.014 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 34.

    Campbell, J. D. et al. Rapid detection, enrichment and propagation of specific T cell subsets based on cytokine secretion. Clin. Exp. Immunol. 163, 1–10. https://doi.org/10.1111/j.1365-2249.2010.04261.x (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Assenmacher, M., Lohning, M. & Radbruch, A. Detection and isolation of cytokine secreting cells using the cytometric cytokine secretion assay. Curr. Protoc. Immunol. 6, 27. https://doi.org/10.1002/0471142735.im0627s46 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • 36.

    Burel, J. G., Apte, S. H. & Doolan, D. L. Development of a cytokine-secreting-based assay for the identification, sorting and transcriptomic analysis of polyfunctional human T cells. Eur. Cytokine Netw. 26, 67–72. https://doi.org/10.1684/ecn.2015.0369 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 37.

    Emming, S. et al. A molecular network regulating the proinflammatory phenotype of human memory T lymphocytes. Nat. Immunol. 21, 388–399. https://doi.org/10.1038/s41590-020-0622-8 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 38.

    Sumida, T. et al. Activated beta-catenin in Foxp3(+) regulatory T cells links inflammatory environments to autoimmunity. Nat. Immunol. 19, 1391–1402. https://doi.org/10.1038/s41590-018-0236-6 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Aschenbrenner, D. et al. An immunoregulatory and tissue-residency program modulated by c-MAF in human TH17 cells. Nat. Immunol. 19, 1126–1136. https://doi.org/10.1038/s41590-018-0200-5 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Li, R., Patterson, K. R. & Bar-Or, A. Reassessing B cell contributions in multiple sclerosis. Nat. Immunol. 19, 696–707. https://doi.org/10.1038/s41590-018-0135-x (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 41.

    Li, R. et al. Proinflammatory GM-CSF-producing B cells in multiple sclerosis and B cell depletion therapy. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aab4176 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Deng, N. & Mosmann, T. R. Optimization of the cytokine secretion assay for human IL-2 in single and combination assays. Cytometry A 87, 777–783. https://doi.org/10.1002/cyto.a.22668 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Wawrzyniak, M. et al. A novel, dual cytokine-secretion assay for the purification of human Th22 cells that do not co-produce IL-17A. Allergy 71, 47–57. https://doi.org/10.1111/all.12768 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 44.

    Brummelman, J. et al. Development, application and computational analysis of high-dimensional fluorescent antibody panels for single-cell flow cytometry. Nat. Protoc. 14, 1946–1969. https://doi.org/10.1038/s41596-019-0166-2 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 45.

    Cossarizza, A. et al. Guidelines for the use of flow cytometry and cell sorting in immunological studies. Eur. J. Immunol. 49, 1457–1973. https://doi.org/10.1002/eji.201970107 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Satija, R. & Shalek, A. K. Heterogeneity in immune responses: from populations to single cells. Trends Immunol. 35, 219–229. https://doi.org/10.1016/j.it.2014.03.004 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Mahnke, Y., Chattopadhyay, P. & Roederer, M. Publication of optimized multicolor immunofluorescence panels. Cytometry A 77, 814–818. https://doi.org/10.1002/cyto.a.20916 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • 48.

    Campbell, J. D. Detection and enrichment of antigen-specific CD4+ and CD8+ T cells based on cytokine secretion. Methods 31, 150–159. https://doi.org/10.1016/s1046-2023(03)00125-7 (2003).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 49.

    Brosterhus, H. et al. Enrichment and detection of live antigen-specific CD4(+) and CD8(+) T cells based on cytokine secretion. Eur. J. Immunol. 29, 4053–4059. https://doi.org/10.1002/(SICI)1521-4141(199912)29:12%3c4053::AID-IMMU4053%3e3.0.CO;2-C (1999).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 50.

    Lighaam, L. C. et al. In vitro-Induced Human IL-10(+) B Cells do not show a subset-defining marker signature and plastically co-express IL-10 with pro-inflammatory cytokines. Front Immunol. 9, 1913. https://doi.org/10.3389/fimmu.2018.01913 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Wang, C. et al. CD5L/AIM regulates lipid biosynthesis and restrains Th17 cell pathogenicity. Cell 163, 1413–1427. https://doi.org/10.1016/j.cell.2015.10.068 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Gaublomme, J. T. et al. Single-cell genomics unveils critical regulators of Th17 cell pathogenicity. Cell 163, 1400–1412. https://doi.org/10.1016/j.cell.2015.11.009 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Mexhitaj, I. et al. Abnormal effector and regulatory T cell subsets in paediatric-onset multiple sclerosis. Brain 142, 617–632. https://doi.org/10.1093/brain/awz017 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *