Neurophysiological correlates of perception–action binding in the somatosensory system


  • 1.

    Hommel, B., Müsseler, J., Aschersleben, G. & Prinz, W. The Theory of Event Coding (TEC): a framework for perception and action planning. Behav. Brain Sci. 24, 849–878 (2001) (discussion 878–937).

    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Hommel, B. Event files: evidence for automatic integration of stimulus-response episodes. Vis. Cogn. 5, 183–216 (1998).


    Google Scholar
     

  • 3.

    Hommel, B. Event files: feature binding in and across perception and action. Trends Cogn. Sci. 8, 494–500 (2004).

    PubMed 

    Google Scholar
     

  • 4.

    Hommel, B. The Simon effect as tool and heuristic. Acta Psychol. (Amst.) 136, 189–202 (2011).


    Google Scholar
     

  • 5.

    Hommel, B. Theory of Event Coding (TEC) V20: Representing and controlling perception and action. Atten. Percept. Psychophys. https://doi.org/10.3758/s13414-019-01779-4 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Adelhöfer, N., Chmielewski, W. X. & Beste, C. How perceptual ambiguity affects response inhibition processes. J. Neurophysiol. 122, 500–511 (2019).

    PubMed 

    Google Scholar
     

  • 7.

    Chmielewski, W. X. & Beste, C. Stimulus-response recoding during inhibitory control is associated with superior frontal and parahippocampal processes. NeuroImage 196, 227–236 (2019).

    PubMed 

    Google Scholar
     

  • 8.

    Colzato, L. S., Warrens, M. J. & Hommel, B. Priming and binding in and across perception and action: a correlational analysis of the internal structure of event files. Q. J. Exp. Psychol. 59, 1785–1804 (2006).


    Google Scholar
     

  • 9.

    Hommel, B. How much attention does an event file need?. J. Exp. Psychol. Hum. Percept. Perform. 31, 1067–1082 (2005).

    PubMed 

    Google Scholar
     

  • 10.

    Hommel, B. & Colzato, L. Visual attention and the temporal dynamics of feature integration. Vis. Cogn. 11, 483–521 (2004).


    Google Scholar
     

  • 11.

    Opitz, A., Beste, C. & Stock, A.-K. Using temporal EEG signal decomposition to identify specific neurophysiological correlates of distractor-response bindings proposed by the theory of event coding. NeuroImage 209, 116524 (2020).

    PubMed 

    Google Scholar
     

  • 12.

    Takacs, A. et al. Connecting EEG signal decomposition and response selection processes using the theory of event coding framework. Hum. Brain Mapp. https://doi.org/10.1002/hbm.24983 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Horner, A. J. & Henson, R. N. Incongruent abstract stimulus-response bindings result in response interference: fMRI and EEG evidence from visual object classification priming. J. Cogn. Neurosci. 24, 760–773 (2012).

    PubMed 

    Google Scholar
     

  • 14.

    Kühn, S., Keizer, A. W., Colzato, L. S., Rombouts, S. A. R. B. & Hommel, B. The Neural underpinnings of event-file management: evidence for stimulus-induced activation of and competition among stimulus-response bindings. J. Cogn. Neurosci. 23, 896–904 (2011).

    PubMed 

    Google Scholar
     

  • 15.

    Kühn, S., Keizer, A. W., Rombouts, S. A. R. B. & Hommel, B. The functional and neural mechanism of action preparation: roles of EBA and FFA in voluntary action control. J. Cogn. Neurosci. 23, 214–220 (2011).

    PubMed 

    Google Scholar
     

  • 16.

    Pastötter, B. & Frings, C. It’s the other way around! Early modulation of sensory distractor processing induced by late response conflict. J. Cogn. Neurosci. 30, 985–998 (2018).

    PubMed 

    Google Scholar
     

  • 17.

    Petruo, V. et al. Altered perception-action binding modulates inhibitory control in Gilles de la Tourette syndrome. J. Child Psychol. Psychiatry 60, 953–962 (2019).

    PubMed 

    Google Scholar
     

  • 18.

    van Steenbergen, H. et al. Representational precision in visual cortex reveals outcome encoding and reward modulation during action preparation. NeuroImage 157, 415–428 (2017).

    PubMed 

    Google Scholar
     

  • 19.

    Bodmer, B. & Beste, C. On the dependence of response inhibition processes on sensory modality: response inhibition processes and sensory modality. Hum. Brain Mapp. 38, 1941–1951 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Friedrich, J. & Beste, C. The impact of stimulus modality on the processing of conflicting sensory information during response inhibition. Neuroscience 410, 191–201 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Bodmer, B., Friedrich, J., Roessner, V. & Beste, C. Differences in response inhibition processes between adolescents and adults are modulated by sensory processes. Dev. Cogn. Neurosci. 31, 35–45 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Friedrich, J., Mückschel, M. & Beste, C. Somatosensory lateral inhibition processes modulate motor response inhibition: an EEG source localization study. Sci. Rep. 7, 4454 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Friedrich, J., Mückschel, M. & Beste, C. Specific properties of the SI and SII somatosensory areas and their effects on motor control: a system neurophysiological study. Brain Struct. Funct. 223, 687–699 (2018).

    PubMed 

    Google Scholar
     

  • 24.

    Friedrich, J. & Beste, C. Low and high stimulation frequencies differentially affect automated response selection in the superior parietal cortex – implications for somatosensory area processes. Sci. Rep. 10, 3954 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Friedrich, J., Mückschel, M. & Beste, C. Physical intensity of stimuli modulates motor inhibition by affecting response selection processes in right inferior frontal regions. Behav. Brain Res. 359, 597–608 (2019).

    PubMed 

    Google Scholar
     

  • 26.

    Verleger, R., Metzner, M. F., Ouyang, G., Śmigasiewicz, K. & Zhou, C. Testing the stimulus-to-response bridging function of the oddball-P3 by delayed response signals and residue iteration decomposition (RIDE). NeuroImage 100, 271–280 (2014).

    PubMed 

    Google Scholar
     

  • 27.

    Chmielewski, W. X., Mückschel, M. & Beste, C. Response selection codes in neurophysiological data predict conjoint effects of controlled and automatic processes during response inhibition. Hum. Brain Mapp. 39, 1839–1849 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Folstein, J. R. & Van Petten, C. Influence of cognitive control and mismatch on the N2 component of the ERP: a review. Psychophysiology 45, 152–170 (2008).

    PubMed 

    Google Scholar
     

  • 29.

    Ouyang, G., Herzmann, G., Zhou, C. & Sommer, W. Residue iteration decomposition (RIDE): a new method to separate ERP components on the basis of latency variability in single trials: RIDE: a new method to separate ERP components. Psychophysiology 48, 1631–1647 (2011).

    PubMed 

    Google Scholar
     

  • 30.

    Ouyang, G., Schacht, A., Zhou, C. & Sommer, W. Overcoming limitations of the ERP method with Residue Iteration Decomposition (RIDE): a demonstration in go/no-go experiments: Overcoming limitations with RIDE. Psychophysiology 50, 253–265 (2013).

    PubMed 

    Google Scholar
     

  • 31.

    Ouyang, G., Sommer, W. & Zhou, C. A toolbox for residue iteration decomposition (RIDE): a method for the decomposition, reconstruction, and single trial analysis of event related potentials. J. Neurosci. Methods 250, 7–21 (2015).

    PubMed 

    Google Scholar
     

  • 32.

    Bluschke, A., Chmielewski, W. X., Mückschel, M., Roessner, V. & Beste, C. Neuronal intra-individual variability masks response selection differences between ADHD subtypes: a need to change perspectives. Front. Hum. Neurosci. 11, 329 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Schreiter, M. L., Chmielewski, W. & Beste, C. Neurophysiological processes and functional neuroanatomical structures underlying proactive effects of emotional conflicts. NeuroImage 174, 11–21 (2018).

    PubMed 

    Google Scholar
     

  • 34.

    Friedrich, J. & Beste, C. Passive perceptual learning modulates motor inhibitory control in superior frontal regions. Hum. Brain Mapp. 41, 726–738 (2020).

    PubMed 

    Google Scholar
     

  • 35.

    Forster, B. & Gillmeister, H. ERP investigation of transient attentional selection of single and multiple locations within touch: directing attention within touch. Psychophysiology 48, 788–796 (2011).

    PubMed 

    Google Scholar
     

  • 36.

    Sugimoto, F. & Katayama, J. Somatosensory P2 reflects resource allocation in a game task: assessment with an irrelevant probe technique using electrical probe stimuli to shoulders. Int. J. Psychophysiol. 87, 200–204 (2013).

    PubMed 

    Google Scholar
     

  • 37.

    Townsend, J. T. & Ashby, F. G. The Stochastic Modeling of Elementary Psychological Processes: James T. Townsend, F. Gregory Ashby (Cambridge University Press, Cambridge, 1983).


    Google Scholar
     

  • 38.

    Liesefeld, H. R. & Janczyk, M. Combining speed and accuracy to control for speed-accuracy trade-offs(?). Behav. Res. Methods 51, 40–60 (2019).

    PubMed 

    Google Scholar
     

  • 39.

    Petruo, V. A., Stock, A.-K., Münchau, A. & Beste, C. A systems neurophysiology approach to voluntary event coding. NeuroImage 135, 324–332 (2016).

    PubMed 

    Google Scholar
     

  • 40.

    Ouyang, G., Hildebrandt, A., Sommer, W. & Zhou, C. Exploiting the intra-subject latency variability from single-trial event-related potentials in the P3 time range: A review and comparative evaluation of methods. Neurosci. Biobehav. Rev. 75, 1–21 (2017).

    PubMed 

    Google Scholar
     

  • 41.

    Falkenstein, M., Hohnsbein, J. & Hoormann, J. Effects of choice complexity on different subcomponents of the late positive complex of the event-related potential. Electroencephalogr. Clin. Neurophysiol. Potentials Sect. 92, 148–160 (1994).

    CAS 

    Google Scholar
     

  • 42.

    Verleger, R., Jaśkowski, P. & Wascher, E. Evidence for an integrative role of P3b in linking reaction to perception. J. Psychophysiol. 19, 165–181 (2005).


    Google Scholar
     

  • 43.

    Borich, M. R., Brodie, S. M., Gray, W. A., Ionta, S. & Boyd, L. A. Understanding the role of the primary somatosensory cortex: opportunities for rehabilitation. Neuropsychologia 79, 246–255 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Andersen, R. A. & Buneo, C. A. Intentional maps in posterior parietal cortex. Annu. Rev. Neurosci. 25, 189–220 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Whitlock, J. R. Posterior parietal cortex. Curr. Biol. 27, R691–R695 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Ackerley, R. et al. An fMRI study on cortical responses during active self-touch and passive touch from others. Front. Behav. Neurosci. 6, 51 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Bolognini, N. & Maravita, A. Proprioceptive alignment of visual and somatosensory maps in the posterior parietal cortex. Curr. Biol. 17, 1890–1895 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Ackerley, R. & Kavounoudias, A. The role of tactile afference in shaping motor behaviour and implications for prosthetic innovation. Neuropsychologia 79, 192–205 (2015).

    PubMed 

    Google Scholar
     

  • 49.

    Colzato, L. S., Raffone, A. & Hommel, B. What do we learn from binding features? Evidence for multilevel feature integration. J. Exp. Psychol. Hum. Percept. Perform. 32, 705–716 (2006).

    PubMed 

    Google Scholar
     

  • 50.

    Krause, F. & Lindemann, O. Expyriment: a Python library for cognitive and neuroscientific experiments. Behav. Res. Methods 46, 416–428 (2014).

    PubMed 

    Google Scholar
     

  • 51.

    Mückschel, M., Chmielewski, W., Ziemssen, T. & Beste, C. The norepinephrine system shows information-content specific properties during cognitive control: evidence from EEG and pupillary responses. NeuroImage 149, 44–52 (2017).

    PubMed 

    Google Scholar
     

  • 52.

    Ouyang, G., Sommer, W. & Zhou, C. Updating and validating a new framework for restoring and analyzing latency-variable ERP components from single trials with residue iteration decomposition (RIDE): ERP analysis with residue iteration decomposition. Psychophysiology 52, 839–856 (2015).

    PubMed 

    Google Scholar
     

  • 53.

    Wolff, N., Mückschel, M. & Beste, C. Neural mechanisms and functional neuroanatomical networks during memory and cue-based task switching as revealed by residue iteration decomposition (RIDE) based source localization. Brain Struct. Funct. 222, 3819–3831 (2017).

    PubMed 

    Google Scholar
     

  • 54.

    Pascual-Marqui, R. D. Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find. Exp. Clin. Pharmacol. 24(Suppl D), 5–12 (2002).

    PubMed 

    Google Scholar
     

  • 55.

    Marco-Pallarés, J., Grau, C. & Ruffini, G. Combined ICA-LORETA analysis of mismatch negativity. NeuroImage 25, 471–477 (2005).

    PubMed 

    Google Scholar
     

  • 56.

    Sekihara, K., Sahani, M. & Nagarajan, S. S. Localization bias and spatial resolution of adaptive and non-adaptive spatial filters for MEG source reconstruction. NeuroImage 25, 1056–1067 (2005).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Mazziotta, J. et al. A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos. Trans. R. Soc. Lond. B. 356, 1293–1322 (2001).

    CAS 

    Google Scholar
     

  • 58.

    Fuchs, M., Kastner, J., Wagner, M., Hawes, S. & Ebersole, J. S. A standardized boundary element method volume conductor model. Clin. Neurophysiol. 113, 702–712 (2002).

    PubMed 

    Google Scholar
     

  • 59.

    Dippel, G. & Beste, C. A causal role of the right inferior frontal cortex in implementing strategies for multi-component behaviour. Nat. Commun. 6, 6587 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *