New perspectives on Neanderthal dispersal and turnover from Stajnia Cave (Poland)


  • 1.

    Slon, V. et al. The genome of the offspring of a Neanderthal mother and a Denisovan father. Nature 561, 113–116. https://doi.org/10.1038/s41586-018-0455-x (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Fu, Q. et al. An early modern human from Romania with a recent Neanderthal ancestor. Nature 524, 216–219. https://doi.org/10.1038/nature14558 (2015).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Benazzi, S. et al. The makers of the Protoaurignacian and implications for Neandertal extinction. Science 348, 793–796. https://doi.org/10.1126/science.aaa2773 (2015).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 4.

    Hublin, J.-J. & Roebroeks, W. Ebb and flow or regional extinctions? On the character of Neandertal occupation of northern environments. C.R. Palevol. 8, 503–509 (2009).

    Article 

    Google Scholar
     

  • 5.

    Stewart, J. R. & Stringer, C. B. Human evolution out of Africa: the role of refugia and climate change. Science 335, 1317–1321. https://doi.org/10.1126/science.1215627 (2012).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 6.

    Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 7.

    Goval, E. Neandertal settlements in northern France (Cnrs Éditions Inrap, Paris, 2012).


    Google Scholar
     

  • 8.

    Picin, A., Peresani, M., Falguères, C., Gruppioni, G. & Bahain, J.-J. San Bernardino Cave (Italy) and the appearance of Levallois technology in Europe: results of a radiometric and technological reassessment. PLoS ONE 8, e76182. https://doi.org/10.1371/journal.pone.0076182 (2013).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Wragg Sykes, R. M. Neanderthals in the outermost west: technological adaptation in the late middle palaeolithic (re)-colonization of Britain, marine isotope stage 4/3. Quatern. Int. 433, 4–32. https://doi.org/10.1016/j.quaint.2015.12.087 (2017).

    Article 

    Google Scholar
     

  • 10.

    Richter, J. Leave at the height of the party: a critical review of the Middle Paleolithic in Western Central Europe from its beginnings to its rapid decline. Quat. Int. 411, Part A, 107–128. https://doi.org/10.1016/j.quaint.2016.01.018 (2016).

    Article 

    Google Scholar
     

  • 11.

    Kahlke, R.-D. The origin of Eurasian Mammoth Faunas (Mammuthus–Coelodonta Faunal Complex). Quat. Sci. Rev. 96, 32–49. https://doi.org/10.1016/j.quascirev.2013.01.012 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 12.

    Fiorenza, L. et al. To meat or not to meat? New perspectives on Neanderthal ecology. Am. J. Phys. Anthropol. 156, 43–71. https://doi.org/10.1002/ajpa.22659 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • 13.

    Jöris, O. Bifacially backed knives (Keilmesser) in the Central European Middle Palaeolithic. In Axe Age. Acheulian Tool-making from Quarry to Discard (eds N. Goren-Imbar & G. Sharon), 287–310 (Equinox Publishing, London, 2006).


    Google Scholar
     

  • 14.

    Golovanova, L. V. Les hommes de Néandertal du Caucase du Nord : entre l’Ouest et l’Est. L’Anthropologie 119, 254–301. https://doi.org/10.1016/j.anthro.2015.04.003 (2015).

    Article 

    Google Scholar
     

  • 15.

    Valde-Nowak, P. et al. Middle Paleolithic sequences of the Ciemna Cave (Prądnik valley, Poland): The problem of synchronization. Quat. Int. 326–327, 125–145. https://doi.org/10.1016/j.quaint.2014.01.002 (2014).

    Article 

    Google Scholar
     

  • 16.

    Uthmeier, T. & Chabai, V. Neanderthal subsistence tactics in the Crimean Micoquian. In Settlement Dynamics of the Middle Paleolithic and Middle Stone Age Vol. 3 (eds N. Conard & A. Delagnes) 195–234 (Kerns Verlag, Tubingen, 2010).


    Google Scholar
     

  • 17.

    Kolobova, K. A. et al. Archaeological evidence for two separate dispersals of Neanderthals into southern Siberia. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.1918047117 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • 18.

    Mafessoni, F. et al. A high-coverage Neandertal genome from Chagyrskaya Cave. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.2004944117 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • 19.

    Hajdinjak, M. et al. Reconstructing the genetic history of late Neanderthals. Nature 555, 652. https://doi.org/10.1038/nature26151 (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Golovanova, L. V. & Doronichev, V. B. The middle Paleolithic of the caucasus. J. World Prehist. 17, 71–140. https://doi.org/10.1023/a:1023960217881 (2003).

    Article 

    Google Scholar
     

  • 21.

    Golovanova, L. V., Doronicheva, E. V., Doronichev, V. B. & Shirobokov, I. G. Bifacial scraper-knives in the Micoquian sites in the North-Western Caucasus: typology, technology, and reduction. Quat. Int. 428, 49–65. https://doi.org/10.1016/j.quaint.2015.12.069 (2017).

    Article 

    Google Scholar
     

  • 22.

    Green, R. E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722. https://doi.org/10.1126/science.1188021 (2010).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Krings, M. et al. Neandertal DNA sequences and the origin of modern humans. Cell 90, 19–30. https://doi.org/10.1016/S0092-8674(00)80310-4 (1997).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 24.

    Ovchinnikov, I. V. et al. Molecular analysis of Neanderthal DNA from the northern Caucasus. Nature 404, 490. https://doi.org/10.1038/35006625 (2000).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 25.

    Prüfer, K. et al. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505, 43. https://doi.org/10.1038/nature12886 (2014).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 26.

    Prüfer, K. et al. A high-coverage Neandertal genome from Vindija Cave in Croatia. Science 358, 655–658. https://doi.org/10.1126/science.aao1887 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Peyrégne, S. et al. Nuclear DNA from two early Neandertals reveals 80,000 years of genetic continuity in Europe. Sci. Adv. 5, eaaw5873. https://doi.org/10.1126/sciadv.aaw5873 (2019).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Posth, C. et al. Deeply divergent archaic mitochondrial genome provides lower time boundary for African gene flow into Neanderthals. Nat. Commun. 8, 16046. https://doi.org/10.1038/ncomms16046 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Żarski, M. et al. Stratigraphy and palaeoenvironment of Stajnia Cave (southern Poland) with regard to habitation of the site by Neanderthals. Geol. Q. 61, 350–369. https://doi.org/10.7306/gq.1355 (2017).

    Article 

    Google Scholar
     

  • 30.

    Dąbrowski, P. et al. A Neanderthal lower molar from Stajnia Cave, Poland. HOMO J. Comp. Hum. Biol. 64, 89–103. https://doi.org/10.1016/j.jchb.2013.01.001 (2013).

    Article 

    Google Scholar
     

  • 31.

    Nowaczewska, W. et al. The tooth of a Neanderthal child from Stajnia Cave Poland. J. Hum. Evol. 64, 225–231. https://doi.org/10.1016/j.jhevol.2012.12.001 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • 32.

    Urbanowski, M. et al. The first Neanderthal tooth found north of the Carpathian Mountains. Die Naturwissenschaften 97, 411–415 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 33.

    Willman, J. C. et al. Paleobiology and taphonomy of a Middle Paleolithic Neandertal Tooth from Ciemna Cave Southern Poland. J. Paleolithic Archaeol. 2, 359–377. https://doi.org/10.1007/s41982-019-00026-4 (2019).

    Article 

    Google Scholar
     

  • 34.

    Benazzi, S., Bailey, S. E. & Mallegni, F. Brief communication: a morphometric analysis of the neandertal upper second molar leuca I. Am. J. Phys. Anthropol. 152, 300–305. https://doi.org/10.1002/ajpa.22355 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • 35.

    Martin, R. M. G., Hublin, J.-J., Gunz, P. & Skinner, M. M. The morphology of the enamel–dentine junction in Neanderthal molars: gross morphology, non-metric traits, and temporal trends. J Hum. Evol. 103, 20–44. https://doi.org/10.1016/j.jhevol.2016.12.004 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • 36.

    Meyer, M. et al. A mitochondrial genome sequence of a hominin from Sima de los Huesos. Nature 505, 403–406. https://doi.org/10.1038/nature12788 (2014).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 37.

    Welker, F. et al. Palaeoproteomic evidence identifies archaic hominins associated with the Châtelperronian at the Grotte du Renne. Proc. Natl. Acad. Sci. 113, 11162–11167. https://doi.org/10.1073/pnas.1605834113 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 38.

    Renaud, G., Slon, V., Duggan, A. T. & Kelso, J. Schmutzi: estimation of contamination and endogenous mitochondrial consensus calling for ancient DNA. Genome Biol. 16, 224. https://doi.org/10.1186/s13059-015-0776-0 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Kelly, R. L. The three sides of a Biface. Am. Antiq. 53, 717–734 (1988).

    Article 

    Google Scholar
     

  • 40.

    Wiśniewski, A. et al. Looking for provisioning places of shaped tools of the late Neanderthals: a study of a Micoquian open-air site, Pietraszyn 49a (southwestern Poland). C.R. Palevol 18, 367–389. https://doi.org/10.1016/j.crpv.2019.01.003 (2019).

    Article 

    Google Scholar
     

  • 41.

    Picin, A. Short-term occupations at the lakeshore: a technological reassessment of the open–air site Königsaue (Germany). Quartär https://doi.org/10.7485/QU63_1 (2016).

    Article 

    Google Scholar
     

  • 42.

    Valde-Nowak, P. & Cieśla, M. Models of raw material exploitation as an indicator of middle paleolithic mobility: Case studies from uplands of Northern Central Europe. In Short-Term Occupations in Paleolithic Archaeology: Definition and Interpretation (eds J. Cascalheira & A. Picin) 105–120 (Springer, Cham, 2020).


    Google Scholar
     

  • 43.

    Wiśniewski, A. et al. Occupation dynamics north of the Carpathians and Sudetes during the Weichselian (MIS5d-3): the Lower Silesia (SW Poland) case study. Quat. Int. 294, 20–40. https://doi.org/10.1016/j.quaint.2011.09.016 (2013).

    Article 

    Google Scholar
     

  • 44.

    Picin, A. & Cascalheira, J. Introduction to short-term occupations in palaeolithic archaeology. In Short-Term Occupations in Paleolithic Archaeology: Definition and Interpretation (eds J. Cascalheira & A. Picin) 1–15 (Springer, Cham, 2020).


    Google Scholar
     

  • 45.

    Peter, B. M. 100,000 years of gene flow between Neandertals and Denisovans in the Altai mountains. bioRxiv https://doi.org/10.1101/2020.03.13.990523 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Ruebens, K. Regional behaviour among late Neanderthal groups in Western Europe: a comparative assessment of late Middle Palaeolithic bifacial tool variability. J Hum. Evol. 65, 341–362. https://doi.org/10.1016/j.jhevol.2013.06.009 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • 47.

    Gouédo, J.-M. Le technocomplexe micoquien en Europe de l’ouest et centrale: exemples de trois gisements du sud-est du basin parisien, Vinneuf et Champlost (Yonne), Verrières-le-Buisson (Essonne) PhD thesis, Université de Lille (Lille, 1999).

  • 48.

    Frick, J. A. & Herkert, K. Flexibility and conceptual fidelity in the production of Keilmesser with Tranchet Blow. J. Paleolithic Archaeol. https://doi.org/10.1007/s41982-019-00036-2 (2019).

    Article 

    Google Scholar
     

  • 49.

    Marks, A. E. & Chabai, V. P. Stasis and change during the crimean middle paleolithic. In Transitions Before the Transition (eds E. Hovers & S. L. Kuhn) 121–135 (Springer, Berlin, 2006).


    Google Scholar
     

  • 50.

    Van Andel, T. H., Davies, W. & Weninger, B. The human presence in Europe during the last glacial period I: human migrations and the changing climate. In Neanderthals and modern humans in the European landscape during the last glaciation (eds T. H. Van Andel, William Davies, & B. Weniger) 31–56 (McDonald Institute for Archaeological Research, Cambridge, 2003).


    Google Scholar
     

  • 51.

    Richard, M. et al. New electron spin resonance (ESR) ages from Geißenklösterle Cave: a chronological study of the Middle and early Upper Paleolithic layers. J Hum. Evol. 133, 133–145. https://doi.org/10.1016/j.jhevol.2019.05.014 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • 52.

    Uthmeier, T., Kels, H., Schirmer, W. & Böhner, U. Neanderthals in the cold: Middle paleolithic sites from the open-cast mine of Garzweiler, Nordrhein-Westfalen (Germany). In Neanderthal Lifeways, Subsistence and Technology: One Hundred Fifty Years of Neanderthal Study (eds N. J. Conard & J. Richter) 25–41 (Springer, Netherlands, 2011).

  • 53.

    Chabai, V. Kabazi II: stratigraphy and archaeological sequence. In Kabazi II: Last interglacial occupation, environment & subsistence. The Palaeolithic sites of Crimea Vol. 1 (eds V. Chabai, J. Richter, & T. Uthmeier) 1–24 (Shlyakh, 2005).

  • 54.

    Talamo, S. & Richards, M. A Comparison of Bone Pretreatment Methods for AMS Dating of Samples >30,000 BP. Radiocarbon 53, 443–449. https://doi.org/10.1017/S0033822200034573 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 55.

    Fewlass, H. et al. Pretreatment and gaseous radiocarbon dating of 40–100 mg archaeological bone. Sci. Rep. 9, 5342. https://doi.org/10.1038/s41598-019-41557-8 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 56.

    Bronk Ramsey, C., Higham, T., Bowles, A. & Hedges, R. Improvements to the pretreatment of bone at Oxford. Radiocarbon 46, 155–163. https://doi.org/10.1017/S0033822200039473 (2004).

    Article 

    Google Scholar
     

  • 57.

    Kromer, B., Lindauer, S., Synal, H.-A. & Wacker, L. MAMS—a new AMS facility at the Curt-Engelhorn-Centre for Achaeometry, Mannheim, Germany. Nucl. Instrum. Methods Phys. Res., Sect. B 294, 11–13. https://doi.org/10.1016/j.nimb.2012.01.015 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 58.

    Wacker, L., Christl, M. & Synal, H. A. Bats: a new tool for AMS data reduction. Nucl. Instrum. Methods Phys. Res., Sect. B 268, 976–979. https://doi.org/10.1016/j.nimb.2009.10.078 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 59.

    van Klinken, G. J. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. J. Archaeol. Sci. 26, 687–695. https://doi.org/10.1006/jasc.1998.0385 (1999).

    Article 

    Google Scholar
     

  • 60.

    Longin, R. New method of collagen extraction for radiocarbon dating. Nature 230, 241–242. https://doi.org/10.1038/230241a0 (1971).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 61.

    Brown, T. A., Nelson, D. E., Vogel, J. S. & Southon, J. R. Improved collagen extraction by modified longin method. Radiocarbon 30, 171–177. https://doi.org/10.1017/S0033822200044118 (1988).

    CAS 
    Article 

    Google Scholar
     

  • 62.

    Brock, F., Ramsey, C. B. & Higham, T. Quality assurance of ultrafiltered bone dating. Radiocarbon 49, 187–192. https://doi.org/10.1017/S0033822200042107 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 63.

    Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl. Acad. Sci. 110, 15758–15763. https://doi.org/10.1073/pnas.1314445110 (2013).

    ADS 
    Article 
    PubMed 

    Google Scholar
     

  • 64.

    Korlević, P. et al. Reducing microbial and human contamination in DNA extractions from ancient bones and teeth. Biotechniques 59, 87–93. https://doi.org/10.2144/000114320 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 65.

    Rohland, N., Glocke, I., Aximu-Petri, A. & Meyer, M. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nat. Protoc. 13, 2447–2461. https://doi.org/10.1038/s41596-018-0050-5 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 66.

    Gansauge, M.-T. et al. Single-stranded DNA library preparation from highly degraded DNA using T4 DNA ligase. Nucleic Acids Res. 45, e79–e79. https://doi.org/10.1093/nar/gkx033 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 67.

    Gansauge, M.-T. & Meyer, M. Selective enrichment of damaged DNA molecules for ancient genome sequencing. Genome Res. 24, 1543–1549. https://doi.org/10.1101/gr.174201.114 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 68.

    Dabney, J. & Meyer, M. Length and GC-biases during sequencing library amplification: a comparison of various polymerase-buffer systems with ancient and modern DNA sequencing libraries. Biotechniques 52, 87–94. https://doi.org/10.2144/000113809 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 69.

    Kircher, M., Sawyer, S. & Meyer, M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. 40, e3–e3. https://doi.org/10.1093/nar/gkr771 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 70.

    Fu, Q. et al. DNA analysis of an early modern human from Tianyuan Cave, China. Proc. Natl. Acad. Sci. 110, 2223–2227. https://doi.org/10.1073/pnas.1221359110 (2013).

    ADS 
    Article 
    PubMed 

    Google Scholar
     

  • 71.

    Renaud, G., Kelso, J., Kircher, M. & Stenzel, U. freeIbis: an efficient basecaller with calibrated quality scores for Illumina sequencers. Bioinformatics 29, 1208–1209. https://doi.org/10.1093/bioinformatics/btt117 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 72.

    Renaud, G., Stenzel, U. & Kelso, J. leeHom: adaptor trimming and merging for Illumina sequencing reads. Nucleic Acids Res. 42, e141–e141. https://doi.org/10.1093/nar/gku699 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 73.

    Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595. https://doi.org/10.1093/bioinformatics/btp698 (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 74.

    Meyer, M. et al. A high-coverage genome sequence from an Archaic Denisovan individual. Science 338, 222–226. https://doi.org/10.1126/science.1224344 (2012).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 75.

    Lyman, R. L. Quantitative Paleozoology (Cambridge University Press, Cambridge, 2008).


    Google Scholar
     

  • 76.

    Behrensmeyer, A. K. Taphonomic and ecologic information from bone weathering. Paleobiology 4, 150–162. https://doi.org/10.1017/S0094837300005820 (1978).

    Article 

    Google Scholar
     

  • 77.

    Pelegrin, J., Karlin, C. & Bodu, P. “Chaînes Opératoires”: un outil pour le préhistorien. In Technologie Préstorique. Notes et Monographies Techniques. 55–62 (Editions du CNRS, Paris, 1988).

  • 78.

    Boëda, E. Tech-logique & Technologie. Une Paléo-histoire des objects lithiques tranchants. 259 (@rchéo-éditions.com, Paris, 2013).


    Google Scholar
     

  • 79.

    Picin, A. Technological adaptation and the emergence of Levallois in Central Europe: new insight from the Markkleeberg and Zwochau open-air sites in Germany. J. Quat. Sci. 33, 300–312. https://doi.org/10.1002/jqs.2978 (2018).

    Article 

    Google Scholar
     

  • 80.

    Picin, A. et al. Neanderthal mobile toolkit in short-term occupations at Teixoneres Cave (Moia, Spain). J. Archaeol. Sci. Rep. 29, 102165. https://doi.org/10.1016/j.jasrep.2019.102165 (2020).

    Article 

    Google Scholar
     

  • 81.

    Bordes, F. Typologie du Paléolitique ancien et moyen (CNRS, Paris, 1961).


    Google Scholar
     

  • 82.

    Picin, A., Peresani, M. & Vaquero, M. Application of a new typological approach to classifying denticulate and notched tools: the study of two Mousterian lithic assemblages. J. Archaeol. Sci. 38, 711–722. https://doi.org/10.1016/j.jas.2010.10.025 (2011).

    Article 

    Google Scholar
     

  • 83.

    Bosinski, G. Die Steinartefakte. In Die Bocksteinschmiede im Lonetal (Markung Rammingen, Kr. Ulm) Vol. Band 1 (eds R. Wetzel & G. Bosinski) 21–70 (Veröffentlichungen des Staatlichen Amtes für Denkmalpflege Stuttgart, Stuttgart, 1969).

  • 84.

    Boëda, E. Caracteristiques techniques des chaines operatoires lithiques des niveaux micoquiens de Külna (Tchecoslovaquie). Paleo 1, 57–72 (1995).


    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *