One-pot, room-temperature conversion of dinitrogen to ammonium chloride at a main-group element


  • 1.

    Notman, N. Haber–Bosch power consumption slashed. Chemistry World (21 October 2012).

  • 2.

    Allen, A. D., Senoff, C. V. Nitrogenopentammineruthenium(ii) complexes. J. Chem. Soc. D 621–622 (1965).

  • 3.

    Burford, R. J., Yeo, A. & Fryzuk, M. D. Dinitrogen activation by group 4 and group 5 metal complexes supported by phosphine-amido containing ligand manifolds. Coord. Chem. Rev. 334, 84–99 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Tanaka, H., Nishibayashi, Y. & Yoshizawa, K. Interplay between theory and experiment for ammonia synthesis catalyzed by transition metal complexes. Acc. Chem. Res. 49, 987–995 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 5.

    Anderson, J. S., Rittle, J. & Peters, J. C. Catalytic conversion of nitrogen to ammonia by an iron model complex. Nature 501, 84–87 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 6.

    Fryzuk, M. D. N2 coordination. Chem. Commun. 49, 4866–4868 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Hazari, N. Homogeneous iron complexes for the conversion of dinitrogen into ammonia and hydrazine. Chem. Soc. Rev. 39, 4044–4056 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 8.

    Schrock, R. R. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Acc. Chem. Res. 38, 955–962 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 9.

    MacKay, B. A. & Fryzuk, M. D. Dinitrogen coordination chemistry: on the biomimetic borderlands. Chem. Rev. 104, 385–401 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 10.

    Hidai, M. & Mizobe, Y. Recent advances in the chemistry of dinitrogen complexes. Chem. Rev. 95, 1115–1133 (1995).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Greenwood, N. N. & Earnshaw, A. Chemistry of the Elements 2nd edn (Elsevier Butterworth-Heinemann, 2005).

  • 12.

    Power, P. P. Main-group elements as transition metals. Nature 463, 171–177 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 13.

    Martin, D., Soleilhavoup, M. & Bertrand, G. Stable singlet carbenes as mimics for transition metal centers. Chem. Sci. 2, 389–399 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 14.

    Légaré, M.-A., Pranckevicius, C. & Braunschweig, H. Metallomimetic chemistry of boron. Chem. Rev. 119, 8231–8261 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • 15.

    Kinjo, R., Donnadieu, B., Celik, M. A., Frenking, G. & Bertrand, G. Synthesis and characterization of a neutral tricoordinate organoboron isoelectronic with amines. Science 333, 610–613 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 16.

    Braunschweig, H. et al. Multiple complexation of CO and related ligands to a main-group element. Nature 522, 327–330 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 17.

    Soleilhavoup, M. & Bertrand, G. Borylenes: an emerging class of compounds. Angew. Chem. Int. Ed. 56, 10282–10292 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Légaré, M.-A. et al. Nitrogen fixation and reduction at boron. Science 359, 896–900 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • 19.

    Légaré, M.-A. et al. The reductive coupling of dinitrogen. Science 363, 1329–1332 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • 20.

    Broere, D. L. J. & Holland, P. L. Boron compounds tackle dinitrogen. Science 359, 871 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 21.

    Liu, Y. et al. Facile ammonia synthesis from electrocatalytic N2 reduction under ambient conditions on N-doped porous carbon. ACS Catal. 8, 1186–1191 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Qiu, W. et al. High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst. Nat. Commun. 9, 3485 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 23.

    Burford, R. J. & Fryzuk, M. D. Examining the relationship between coordination mode and reactivity of dinitrogen. Nat. Rev. Chem. 1, 0026 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 24.

    Chatt, J., Pearman, A. J. & Richards, R. L. The reduction of mono-coordinated molecular nitrogen to ammonia in a protic environment. Nature 253, 39–40 (1975).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Pool., J. A., Lobkovsky, E. & Chirik, P. J. Hydrogenation and cleavage of dinitrogen to ammonia with a zirconium complex. Nature 427, 527–530 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 26.

    Laplaza, C. A. & Cummins, C. C. Dinitrogen cleavage by a three-coordinate molybdenum(iii) complex. Science 268, 861–863 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 27.

    Curley, J. J., Cook, T. R., Reece, S. Y., Müller, P. & Cummins, C. C. Shining light on dinitrogen cleavage: structural features, redox chemistry, and photochemistry of the key intermediate bridging dinitrogen complex. J. Am. Chem. Soc. 130, 9394–9405 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 28.

    Thompson, N. B., Green, M. T. & Peters, J. C. Nitrogen fixation via a terminal Fe(iv) nitride. J. Am. Chem. Soc. 139, 15312–15315 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 29.

    Hellman, A. et al. Predicting catalysis: understanding ammonia synthesis from first-principles calculations. J. Phys. Chem. B 110, 17719–17735 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 30.

    Rodriguez, M. M., Bill, E., Brennessel, W. W. & Holland, P. L. N2 reduction and hydrogenation to ammonia by a molecular iron–potassium complex. Science 334, 780–783 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 31.

    Bazhenova, T. A. & Shilov, A. E. Nitrogen fixation in solution. Coord. Chem. Rev. 144, 69–145 (1995).

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Doyle, L. R. et al. Catalytic dinitrogen reduction to ammonia at a triamidoamine–titanium complex. Angew. Chem. Int. Ed. 57, 6314–6318 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 33.

    Bezdek, M. J., Guo, S. & Chirik, P. J. Terpyridine molybdenum dinitrogen chemistry: synthesis of dinitrogen complexes that vary by five oxidation states. Inorg. Chem. 55, 3117–3127 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 34.

    Soleilhavoup, M. & Bertrand, G. Cyclic (alkyl)(amino)carbenes (CAACs): stable carbenes on the rise. Acc. Chem. Res. 48, 256–266 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 35.

    Bissinger, P. et al. Isolation of a neutral boron-containing radical stabilized by a cyclic (alkyl)(amino)carbene. Angew. Chem. Int. Ed. 53, 7360–7363 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 36.

    Braunschweig, H. et al. Main-group metallomimetics: transition metal-like photolytic CO substitution at boron. J. Am. Chem. Soc. 139, 1802–1805 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 37.

    Arrowsmith, M. et al. Direct access to a CAAC-supported dihydrodiborene and its dianion. Chem. Commun. 54, 4669–4672 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 38.

    Arrowsmith, M. et al. Facile synthesis of a stable dihydroboryl {BH2} anion. Angew. Chem. Int. Ed. 57, 15272–15275 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 39.

    Armarego, W. L. F. & Chai, C. L. L. Purification of Laboratory Chemicals 6th edn (Elsevier, 2009).

  • 40.

    Chaney, A. L. & Marbach, E. P. Modified reagents for determination of urea and ammonia. Clin. Chem. 8, 130–132 (1962).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 41.

    Stoll, S. & Schweiger, A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 178, 42–55 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 42.

    Sheldrick, G. SHELXT—integrated space-group and crystal-structure determination. Acta Crystallogr. A 71, 3–8 (2015).

    Article 

    Google Scholar
     

  • 43.

    Sheldrick, G. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *