Optimization of the electron transport layer in quantum dot light-emitting devices


  • 1.

    Zaiats, G., Ikeda, S., Kinge, S. & Kamat, P. V. Quantum dot light-emitting devices: beyond alignment of energy levels. ACS Appl. Mater. Interfaces 9, 30741–30745 (2017).

    CAS 

    Google Scholar
     

  • 2.

    Kim, H. et al. Characteristics of CuInS2/ZnS quantum dots and its application on LED. J. Cryst. Growth 326, 90–93 (2011).

    CAS 

    Google Scholar
     

  • 3.

    Kim, J.-H. & Yang, H. All-solution-processed, multilayered CuInS2/ZnS colloidal quantum-dot-based electroluminescent device. Opt. Lett. 39, 5002–5005 (2014).


    Google Scholar
     

  • 4.

    Qian, L., Zheng, Y., Xue, J. & Holloway, P. H. Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nat. Photonics 5, 543–548 (2011).

    CAS 

    Google Scholar
     

  • 5.

    Coe, S., Woo, W. K., Bawendi, M. & Bulovic, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420, 800–803 (2002).

    CAS 

    Google Scholar
     

  • 6.

    Chuang, C.-H. M., Brown, P. R., Bulović, V. & Bawendi, M. G. Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat. Mater. 13, 796–801 (2014).

    CAS 

    Google Scholar
     

  • 7.

    Mashford, B. S. et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nat. Photonics 7, 407–412 (2013).

    CAS 

    Google Scholar
     

  • 8.

    Chen, H. et al. All-solution-processed quantum dot light emitting diodes based on double hole transport layers by hot spin-coating with highly efficient and low turn-on voltage. ACS Appl. Mater. Interfaces 10, 29076–29082 (2018).

    CAS 

    Google Scholar
     

  • 9.

    Shirasaki, Y., Supran, G. J., Bawendi, M. G., Bulovic, V. & Bulović, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics 7, 13–23 (2013).

    CAS 

    Google Scholar
     

  • 10.

    Zhang, Y. et al. Employing heavy metal-free colloidal quantum dots in solution-processed white light-emitting diodes. Nano Lett. 11, 329–332 (2011).

    CAS 

    Google Scholar
     

  • 11.

    Marin, R. et al. Mercaptosilane-passivated CuInS2 quantum dots for luminescence thermometry and luminescent labels. ACS Appl. Nano Mater. 2, 2426–2436 (2019).

    CAS 

    Google Scholar
     

  • 12.

    Li, L. et al. Highly luminescent CuInS2/ZnS core/shell nanocrystals: cadmium-free quantum dots for in vivo imaging. Chem. Mater. 21, 2422–2429 (2009).

    CAS 

    Google Scholar
     

  • 13.

    Yoon, S.-Y. et al. Systematic and extensive emission tuning of highly efficient Cu–In–S-based quantum dots from visible to near infrared. Chem. Mater. 31, 2627–2634 (2019).

    CAS 

    Google Scholar
     

  • 14.

    Steckel, J. S. et al. Color-saturated green-emitting QD-LEDs. Angew. Chem. Int. Ed. Engl. 45, 5796–5799 (2006).

    CAS 

    Google Scholar
     

  • 15.

    Anikeeva, P. O., Halpert, J. E., Bawendi, M. G. & Bulović, V. Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum. Nano Lett. 9, 2532–2536 (2009).

    CAS 

    Google Scholar
     

  • 16.

    Lee, K.-H. et al. Highly efficient, color-pure, color-stable blue quantum dot light-emitting devices. ACS Nano 7, 7295–7302 (2013).

    CAS 

    Google Scholar
     

  • 17.

    Park, J.-S. et al. Alternative patterning process for realization of large-area, full-color, active quantum dot display. Nano Lett. 16, 6946–6953 (2016).

    CAS 

    Google Scholar
     

  • 18.

    Dai, X. et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96–99 (2014).

    CAS 

    Google Scholar
     

  • 19.

    Zaiats, G., Kinge, S., Kamat, P. V. Origin of dual photoluminescence states in ZnS-CuInS2 alloy nanostructures. J. Phys. Chem. 120 19461–19469 (2016).

  • 20.

    Jara, D. H., Yoon, S. J., Stamplecoskie, K. G. & Kamat, P. V. Size-dependent photovoltaic performance of CuInS2 quantum dot-sensitized solar cells. Chem. Mater. 26, 7221–7228 (2014).

    CAS 

    Google Scholar
     

  • 21.

    Aldakov, D., Lefrancois, A. & Reiss, P. Ternary and quaternary metal chalcogenide nanocrystals: synthesis, properties and applications. J. Mater. Chem. C. 1, 3756–3776 (2013).

    CAS 

    Google Scholar
     

  • 22.

    Li, J. et al. Alloyed CuInS2 –ZnS nanorods: synthesis, structure and optical properties. CrystEngComm 17, 5634–5643 (2015).

    CAS 

    Google Scholar
     

  • 23.

    Zaiats, G., Kinge, S. & Kamat, P. V. Origin of dual photoluminescence states in ZnS-CuInS2 alloy nanostructures. J. Phys. Chem. C. 120, 10641–10646 (2016).

    CAS 

    Google Scholar
     

  • 24.

    Torimoto, T. et al. Facile synthesis of ZnS−AgInS2 solid solution nanoparticles for a color-adjustable luminophore. J. Am. Chem. Soc. 129, 12388–12389 (2007).

    CAS 

    Google Scholar
     

  • 25.

    Dai, M. et al. Tunable photoluminescence from the visible to near-infrared wavelength region of non-stoichiometric AgInS2 nanoparticles. J. Mater. Chem. 22, 12851 (2012).

    CAS 

    Google Scholar
     

  • 26.

    Stroyuk, O. et al., A. Origin and dynamics of highly efficient broadband photoluminescence of aqueous glutathione-capped size-selected Ag–In–S quantum dots. J. Phys. Chem. C 25, 13648–13658 (2018).

  • 27.

    Hoffman, J. B., Choi, H. & Kamat, P. V. Size-dependent energy transfer pathways in cdse quantum dot–squaraine light-harvesting assemblies: förster versus dexter. J. Phys. Chem. C. 118, 18453–18461 (2014).

    CAS 

    Google Scholar
     

  • 28.

    Luther, J. M. et al. Structural, optical, and electrical properties of self-assembled films of pbse nanocrystals treated with 1,2-ethanedithiol. ACS Nano 2, 271–280 (2008).

    CAS 

    Google Scholar
     

  • 29.

    Hughes, B. K. et al. Control of PbSe quantum dot surface chemistry and photophysics using an alkylselenide ligand. ACS Nano 6, 5498–5506 (2012).

    CAS 

    Google Scholar
     

  • 30.

    Bai, Z. et al. Hydroxyl-terminated CuInS2-based quantum dots: toward efficient and bright light emitting diodes. Chem. Mater. 28, 1085–1091 (2016).

    CAS 

    Google Scholar
     

  • 31.

    Lee, K. H. et al. Highly efficient, color-reproducible full-color electroluminescent devices based on red/green/blue quantum dot-mixed multilayer. ACS Nano 9, 10941–10949 (2015).

    CAS 

    Google Scholar
     

  • 32.

    Trizio, L. D. E. et al. Strongly fluorescent quaternary Cu–In–Zn–S nanocrystals prepared from Cu1-x InS2 nanocrystals by partial cation exchange. Chem. Mater. 24, 2400–2406 (2012).


    Google Scholar
     

  • 33.

    Akkerman, Q. A. et al. From binary Cu2S to ternary Cu–In–S and quaternary Cu–In–Zn–S nanocrystals with tunable composition via partial cation exchange. ACS Nano 9, 521–531 (2015).

    CAS 

    Google Scholar
     

  • 34.

    Nelson, H. D. & Gamelin, D. R. Valence-band electronic structures of Cu + -doped ZnS, alloyed Cu–In–Zn–S, and ternary CuInS2 nanocrystals: a unified description of photoluminescence across compositions. J. Phys. Chem. C. 122, 18124–18133 (2018).

    CAS 

    Google Scholar
     

  • 35.

    Pan, J. et al. Size tunable ZnO nanoparticles to enhance electron injection in solution processed QLEDs. ACS Photonics 3, 215–222 (2016).

    CAS 

    Google Scholar
     

  • 36.

    Fong, H. H., Lun, K. C. & So, S. K. Hole transports in molecularly doped triphenylamine derivative. Chem. Phys. Lett. 353, 407–413 (2002).

    CAS 

    Google Scholar
     

  • 37.

    Chen, B. et al. Template synthesis of CuInS2 nanocrystals from In2S3 nanoplates and their application as counter electrodes in dye-sensitized solar cells. Chem. Mater. 27, 5949–5956 (2015).

    CAS 

    Google Scholar
     

  • 38.

    Coe-Sullivan, S., Woo, W.-K., Steckel, J. S., Bawendi, M. & Bulović, V. Tuning the performance of hybrid organic/inorganic quantum dot light-emitting devices. Org. Electron. 4, 123–130 (2003).

    CAS 

    Google Scholar
     

  • 39.

    Kern, R., Sastrawan, R., Ferber, J., Stangl, R. & Luther, J. Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions. Electrochim. Acta 47, 4213–4225 (2002).

    CAS 

    Google Scholar
     

  • 40.

    Mora-Seró, I. et al. Recombination rates in heterojunction silicon solar cells analyzed by impedance spectroscopy at forward bias and under illumination. Sol. Energy Mater. Sol. Cells 92, 505–509 (2008).


    Google Scholar
     

  • 41.

    Mora-Seró, I. et al. Implications of the negative capacitance observed at forward bias in nanocomposite and polycrystalline solar cells. Nano Lett. 6, 640–650 (2006).


    Google Scholar
     

  • 42.

    Rath, A. K., Lasanta, T., Bernechea, M., Diedenhofen, S. L. & Konstantatos, G. Determination of carrier lifetime and mobility in colloidal quantum dot films via impedance spectroscopy. Appl. Phys. Lett. 104, 63504 (2014).


    Google Scholar
     

  • 43.

    Das, M. et al. Equivalent circuit analysis of Al/rGO-TiO2 metal-semiconductor interface via impedance spectroscopy: graphene induced improvement in carrier mobility and lifetime. Mater. Sci. Semicond. Process. 82, 104–111 (2018).

    CAS 

    Google Scholar
     

  • 44.

    Scher, H. Time scale invariance in transport and relaxation. AIP Conf. Proc. 256, 485–494 (1992).

    CAS 

    Google Scholar
     

  • 45.

    Long, Q., Dinca, S. A., Schiff, E. A., Yu, M. & Theil, J. Electron and hole drift mobility measurements on thin film CdTe solar cells. Appl. Phys. Lett. 105, 42106 (2014).


    Google Scholar
     

  • 46.

    Maynard, B. et al. Electron and hole drift mobility measurements on methylammonium lead iodide perovskite solar cells. Appl. Phys. Lett. 108, 173505 (2016).


    Google Scholar
     

  • 47.

    Yun, H. J. et al. Charge-transport mechanisms in CuInSexS2–x quantum-dot films. ACS Nano 12, 12587–12596 (2018).

    CAS 

    Google Scholar
     

  • 48.

    Draguta, S., McDaniel, H. & Klimov, V. I. Tuning carrier mobilities and polarity of charge transport in films of CuInSexS2-x quantum dots. Adv. Mater. 27, 1701–1705 (2015).

    CAS 

    Google Scholar
     

  • 49.

    Gong, X. et al. Highly efficient quantum dot near-infrared light-emitting diodes. Nat. Photonics 10, 253 (2016).

    CAS 

    Google Scholar
     

  • 50.

    Kim, J.-H. et al. White electroluminescent lighting device based on a single quantum dot emitter. Adv. Mater. 28, 5093–5098 (2016).

    CAS 

    Google Scholar
     

  • 51.

    Heun, S. & Borsenberger, P. M. A comparative study of hole transport in vapor-deposited molecular glasses of N,N′,N″,N‴-tetrakis(4-methylphenyl)-(1,1′-biphenyl)-4,4′-diamine and N,N′-diphenyl-N,N′-bis(3-methylphenyl)-(1,1′-biphenyl)-4,4′-diamine. Chem. Phys. 200, 245–255 (1995).

    CAS 

    Google Scholar
     

  • 52.

    Rutledge, S. A. & Helmy, A. S. Carrier mobility enhancement in poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) having undergone rapid thermal annealing. J. Appl. Phys. 114, 133708 (2013).


    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *