Outcome prediction with resting-state functional connectivity after cardiac arrest


  • 1.

    Giacino, J. T., Fins, J. J., Laureys, S. & Schiff, N. D. Disorders of consciousness after acquired brain injury: The state of the science. Nat. Rev. Neurol. 10, 99–114 (2014).

    PubMed 

    Google Scholar
     

  • 2.

    Overgaard, M. & Overgaard, R. Neural correlates of contents and levels of consciousness. Front. Psychol. 1, 164 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Opara, J. A., Małecka, E. & Szczygiel, J. J. Clinimetric measurement in traumatic brain injuries. Med. Life. 7, 124–127 (2014).

    CAS 

    Google Scholar
     

  • 4.

    Di Perri, C., Stender, J., Laureys, S. & Gosseries, O. Functional neuroanatomy of disorders of consciousness. Epilepsy Behav. 30, 28–32 (2014).

    PubMed 

    Google Scholar
     

  • 5.

    Lee, M. H., Smyser, C. D. & Shimony, J. S. Resting-state fMRI: A review of methods and clinical applications. AJNR Am. J. Neuroradiol. 34, 1866–1872 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Vanhaudenhuyse, A. et al. Two distinct neuronal networks mediate the awareness of environment and of self. J. Cogn. Neurosci. 23, 570–578 (2011).

    PubMed 

    Google Scholar
     

  • 7.

    Raichle, M. E. et al. A default mode of brain function. Proc. Natl. Acad. Sci. U. S. A. 98, 676–682 (2001).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Greicius, M. D., Krasnow, B., Reiss, A. L. & Menon, V. Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. U. S. A. 100, 253–258 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Beckmann, C. F., DeLuca, M., Devlin, J. T. & Smith, S. M. Investigations into resting-state connectivity using independent component analysis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 1001–1013 (2005).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    De Luca, M., Beckmann, C. F., De Stefano, N., Matthews, P. M. & Smith, S. M. fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage 29, 1359–1367 (2006).

    PubMed 

    Google Scholar
     

  • 11.

    Power, J. D. et al. Functional network organization of the human brain. Neuron 72, 665–678 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Smith, S. M. et al. Correspondence of the brain’s functional architecture during activation and rest. Proc. Natl. Acad. Sci. U. S. A. 106, 13040–13045 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Yeo, B. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

    PubMed 

    Google Scholar
     

  • 14.

    Damoiseaux, J. S. et al. Consistent resting-state networks across healthy subjects. Proc. Natl. Acad. Sci. U. S. A. 103, 13848–13853 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    van den Heuvel, M., Mandl, R. & Hulshoff Pol, H. Normalized cut group clustering of resting-state FMRI data. PLoS ONE 3, e2001 (2008).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Fox, M. D. et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. U. S. A. 102, 9673–9678 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Boly, M. et al. Baseline brain activity fluctuations predict somatosensory perception in humans. Proc. Natl. Acad. Sci. U. S. A. 104, 12187–12192 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Dehaene, S. & Changeux, J. P. Ongoing spontaneous activity controls access to consciousness: A neuronal model for inattentional blindness. PLoS Biol. 3, e141 (2005).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Brunetti, M. et al. A frontoparietal network for spatial attention reorienting in the auditory domain: A human fMRI/MEG study of functional and temporal dynamics. Cereb. Cortex. 18, 1139–1147 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Estraneo, A. et al. Standard EEG in diagnostic process of prolonged disorders of consciousness. Clin. Neurophysiol. 127, 2379–2385 (2016).

    PubMed 

    Google Scholar
     

  • 21.

    Kim, S.-P., Hwang, E., Kang, J.-H., Kim, S. & Choi, J.-H. Changes in the thalamocortical connectivity during anesthesia-induced transitions in consciousness. NeuroReport 23, 294–298 (2012).

    PubMed 

    Google Scholar
     

  • 22.

    Zheng, Z. S., Reggente, N., Lutkenhoff, E., Owen, A. M. & Monti, M. M. Disentangling disorders of consciousness: Insights from diffusion tensor imaging and machine learning. Hum. Brain Map. 38, 431–443 (2017).

    CAS 

    Google Scholar
     

  • 23.

    Edelman, G. M. Naturalizing consciousness: A theoretical framework. Proc. Natl. Acad. Sci. U. S. A. 100, 5520–5524 (2003).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Yao, S. et al. Thalamocortical sensorimotor circuit damage associated with disorders of consciousness for diffuse axonal injury patients. J. Neurol. Sci. 356, 168–174 (2015).

    ADS 
    PubMed 

    Google Scholar
     

  • 25.

    Zhou, J. et al. Specific and nonspecific thalamocortical functional connectivity in normal and vegetative states. Conscious. Cogn. 20, 257–268 (2011).

    PubMed 

    Google Scholar
     

  • 26.

    Adams, J. H., Graham, D. I. & Jennett, B. The neuropathology of the vegetative state after an acute brain insult. Brain 123, 1327–1338 (2000).

    PubMed 

    Google Scholar
     

  • 27.

    Alkire, M. T., Haier, R. J. & Fallon, J. H. Toward a unified theory of narcosis: Brain imaging evidence for a thalamocortical switch as the neurophysiologic basis of anesthetic induced unconsciousness. Conscious. Cogn. 9, 370–386 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Fernandez-Espejo, D. et al. Diffusion weighted imaging distinguishes the vegetative state from the minimally conscious state. Neuroimage 54, 103–112 (2011).

    PubMed 

    Google Scholar
     

  • 29.

    Schiff, N. D. & Fins, J. J. Deep brain stimulation and cognition: Moving from animal to patient. Curr. Opin. Neurol. 20, 638–642 (2007).

    PubMed 

    Google Scholar
     

  • 30.

    Greicius, M. D. et al. Persistent default-mode network connectivity during light sedation. Hum. Brain Mapp. 29, 839–847 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Vincent, J. L. et al. Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447, 83–86 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Vanhaudenhuyse, A. et al. Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain 133, 161–171 (2010).

    PubMed 

    Google Scholar
     

  • 33.

    Cauda, F. et al. Disrupted intrinsic functional connectivity in the vegetative state. J. Neurol. Neurosurg. Psychiatry. 80, 429–431 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Boly, M. et al. Functional connectivity in the default network during resting state is preserved in a vegetative but not in a brain dead patient. Hum. Brain Mapp. 30, 2393–2400 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Tshibanda, L. et al. Neuroimaging after coma. Neuroradiology 52, 15–24 (2010).

    PubMed 

    Google Scholar
     

  • 36.

    Boly, M. et al. Intrinsic brain activity in altered states of consciousness: How conscious is the default mode of brain function?. Ann. N. Y. Acad. Sci. 1129, 119–129 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Laureys, S., Boly, M. & Maquet, P. Tracking the recovery of consciousness from coma. J. Clin. Investig. 116, 1823–1825 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Buckner, R. L., Andrews-Hanna, J. R. & Schacter, D. L. The brain’s default network: Anatomy, function, and relevance to disease. Ann. N.Y. Acad. Sci. 1124, 1–38 (2008).

    ADS 
    PubMed 

    Google Scholar
     

  • 39.

    Hagmann, P. et al. Mapping the structural core of human cerebral cortex. PLoS Biol. 6, e159 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Buckner, R. L. et al. Cortical hubs revealed by intrinsic functional connectivity: Mapping, assessment of stability, and relation to Alzheimer’s disease. J. Neurosci. 29, 1860–1873 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Jennett, B. & Bond, M. Assessment of outcome after severe brain damage. Lancet 1, 480–484 (1975).

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Grippo, A. et al. Neurophysiological prediction of neurological good and poor outcome in post-anoxic coma. Acta Neurol. Scand. 135, 641–648 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Jakob, S. M. et al. Sedation and weaning from mechanical ventilation: Effects of process optimization outside a clinical trial. J. Crit. Care. 22, 219–228 (2007).

    PubMed 

    Google Scholar
     

  • 44.

    Bernard, S. A. et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N. Engl. J. Med. 346, 557–563 (2002).

    PubMed 

    Google Scholar
     

  • 45.

    Barth, M., Breuer, F., Koopmans, P. J., Norris, D. G. & Poser, B. A. Simultaneous multislice (SMS) imaging techniques. Magn. Reson. Med. 75, 63–81 (2016).

    PubMed 

    Google Scholar
     

  • 46.

    Breiman, I. Bagging predictors. Mach. Learn. 24, 123–140 (1996).

    MATH 

    Google Scholar
     

  • 47.

    Breiman, I. Random forests. Mach. Learn. 45, 5–32 (2001).

    MATH 

    Google Scholar
     

  • 48.

    Whitfield-Gabrieli, S. & Nieto-Castanon, A. Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2, 125–141 (2012).

    PubMed 

    Google Scholar
     

  • 49.

    Gustafson, D.E. & Kessel, W.C. Fuzzy clustering with fuzzy covariance matrix. 761–766 (1978 IEEE Conference on Decision and Control, San Diego, CA, USA).

  • 50.

    Friston, K. J., Harrison, L. & Penny, W. D. Dynamic causal modelling. NeuroImage. 19, 1273–1302 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Norton, L. et al. Disruptions of functional connectivity in the default mode network of comatose patients. Neurology. 78, 175–181 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 52.

    Koenig, M. A. et al. MRI default mode network connectivity is associated with functional outcome after cardiopulmonary arrest. Neurocrit. Care. 20, 348–357 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Silva, S. et al. Disruption of posteromedial large-scale neural communication predicts recovery from coma. Neurology. 85, 2036–2044 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Hannawi, Y., Lindquist, M. A., Caffo, B. S., Sair, H. I. & Stevens, R. D. Resting brain activity in disorders of consciousness: A systematic review and meta-analysis. Neurology. 84, 1272–1280 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    van den Heuvel, M. P. & Sporns, O. Rich-club organization of the human connectome. J. Neurosci. 31, 15775–15786 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 56.

    Raichle, M. E. & Snyder, A. Z. A default mode of brain function: A brief history of an evolving idea. Neuroimage. 37, 1083–1090 (2007).

    PubMed 

    Google Scholar
     

  • 57.

    Tononi, G. & Edelman, G. M. Consciousness and complexity. Science 282, 1846–1851 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    Ward, L. M. The thalamic dynamic core theory of conscious experience. Conscious. Cogn. 20, 464–486 (2011).

    PubMed 

    Google Scholar
     

  • 59.

    Laureys, S. & Schiff, N. D. Coma and consciousness: Paradigms (re)framed by neuroimaging. Neuroimage. 61, 478–491 (2012).

    PubMed 

    Google Scholar
     

  • 60.

    Crone, J. S. et al. Altered network properties of the fronto-parietal network and the thalamus in impaired consciousness. NeuroImage Clin. 4, 240–248 (2014).

    PubMed 

    Google Scholar
     

  • 61.

    Koch, C., Massimini, M., Boly, M. & Tononi, G. Neural correlates of consciousness: Progress and problems. Nat. Rev. Neurosci. 17, 307–321 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 62.

    Mhuircheartaigh, R. N. et al. Cortical and subcortical connectivity changes during decreasing levels of consciousness in humans: A functional magnetic resonance imaging study using propofol. J. Neurosci. 30, 9095–90102 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 63.

    Boveroux, P. et al. Breakdown of within- and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. Anesthesiology 113, 1038–1053 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 64.

    Geerligs, L., Tsvetanov, K. A. & Henson, R. N. Challenges in measuring individual differences in functional connectivity using fMRI: The case of healthy aging. Hum. Brain Map. 38, 4125–4156 (2017).


    Google Scholar
     

  • 65.

    Onoda, K., Ishihara, M. & Yamaguchi, S. Decreased functional connectivity by aging is associated with cognitive decline. J. Cogn. Neurosci. 24, 2186–2198 (2012).

    PubMed 

    Google Scholar
     

  • 66.

    Huang, C. C. et al. Age-related changes in resting-state networks of a large sample size of healthy elderly. CNS Neurosci. Ther. 21, 817–825 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 67.

    Damoiseaux, J. S. Effects of aging on functional and structural brain connectivity. Neuroimage. 160, 32–40 (2017).

    PubMed 

    Google Scholar
     

  • 68.

    Siman-Tov, T. et al. Early age-related functional connectivity decline in high-order cognitive networks. Front. Aging. Neurosci. 8, 330 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 69.

    Farràs-Permanyer, L. et al. Age-related changes in resting-state functional connectivity in older adults. Neural Regen. Res. 14, 1544–1555 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *