Palaeoproteomics gives new insight into early southern African pastoralism


  • 1.

    Shanahan, T. M. et al. The time-transgressive termination of the African Humid Period. Nat. Geosci 8, 140–144 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 2.

    Gasse, F. Hydrological changes in the African tropics since the Last Glacial Maximum. Quatern. Sci. Rev. 19, 189–211 (2000).

    ADS 

    Google Scholar
     

  • 3.

    Kuper, R. & Kröpelin, S. Climate-controlled holocene occupation in the Sahara: Motor of Africa’s Evolution. Science 313, 803–807 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Marshall, F. & Hildebrand, E. Cattle before crops: the beginnings of food production in Africa. J. World Prehistory 16, 99–143 (2002).


    Google Scholar
     

  • 5.

    MacHugh, D. E., Larson, G. & Orlando, L. Taming the past: ancient DNA and the study of animal domestication. Annu. Rev. Anim. Biosci. 5, 329–351 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Vigne, J.-D. et al. Etat des connaissances archéozoologiques sur les débuts de l’élevage du mouton dans l’ancien monde. Ethnozootechnie 91, 11–19 (2012).


    Google Scholar
     

  • 7.

    Churcher, C. S., Kleindienst, M. R., Wiseman, M. F. & McDonald, M. M. The Quaternary faunas of Dakhleh Oasis, Western Desert of Egypt. In The Oasis Papers 2: Proceedings of the Second International Conference of the Dakhleh Oasis Project 1–24 (Oxbow Books, 2008).

  • 8.

    Klein, R. G. & Scott, K. Re-analysis of faunal assemblages from the Haua Fteah and other late quaternary archaeological sites in Cyrenaican Libya. J. Archaeol. Sci. 13, 515–542 (1986).


    Google Scholar
     

  • 9.

    Vermeersch, P. M., Van Peer, P., Moeyersons, J. & Van Neer, W. Sodmein Cave Site, Red Sea Mountains (Egypt). Sahara 6, 31–40 (1994).


    Google Scholar
     

  • 10.

    Gautier, A. The Early to Late Neolithic Archeofaunas from Nabta and Bir Kiseiba. In Holocene Settlement of the Egyptian Sahara: Volume 1: The Archaeology of Nabta Playa (eds Wendorf, F. & Schild, R.) 609–635 (Springer US, New York, 2001). https://doi.org/10.1007/978-1-4615-0653-9_23.


    Google Scholar
     

  • 11.

    Close, A. E. Sinai, Sahara, Sahel: The introduction of domestic caprines to Africa. Jennerstrasse 8, 459–469 (2002).


    Google Scholar
     

  • 12.

    Kindermann, K. et al. Palaeoenvironment and Holocene land use of Djara, Western Desert of Egypt. Quatern. Sci. Rev. 25, 1619–1637 (2006).

    ADS 

    Google Scholar
     

  • 13.

    Lesur, J. Et la gazelle devint chèvre: pré-histoires africaines d’hommes et d’animaux. In Collections « Sites et cités d’Afrique » (eds Bon, F. & Fauvelle, F.-X.) (Presses Universitaires du Midi / Publications Scientifiques du Muséum, 2017).

  • 14.

    Sadr, K. A short history of early herding in southern Africa. In Pastoralism in Africa: Past, Present and Future (eds Bollig, M., Schnegg, M. & Wotzka, H.-P.) 171–197 (Berghahn Books, New York and Oxford, 2013).


    Google Scholar
     

  • 15.

    Pleurdeau, D. et al. “Of Sheep and Men”: Earliest Direct Evidence of Caprine Domestication in Southern Africa at Leopard Cave (Erongo, Namibia). PLoS ONE 7, e40340 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Le Meillour, L. et al. Identification of degraded bone and tooth splinters from arid environments using palaeoproteomics. Palaeogeogr. Palaeoclimatol. Palaeoecol. 11, 472–482 (2018).


    Google Scholar
     

  • 17.

    Horsburgh, K. A. & Moreno-Mayar, J. V. Molecular identification of sheep at Blydefontein Rock Shelter, South Africa. S. Afr. Human. 27, 65–80 (2015).


    Google Scholar
     

  • 18.

    Lander, F. & Russell, T. The archaeological evidence for the appearance of pastoralism and farming in southern Africa. PLoS ONE 13, e0198941 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Sadr, K. Livestock first reached Southern Africa in two separate events. PLoS ONE 10, e0134215 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Sadr, K. Radiocarbon Dates, Stone Tools and the Origin of Herding on the West Coast of South Africa (Africa Magna Verlag, Frankfurt am Main, 2014).


    Google Scholar
     

  • 21.

    Smith, A. B., Sadr, K., Gribble, J. & Yates, R. Excavations in the South-Western Cape, South Africa, and the archaeological identity of prehistoric hunter-gatherers within the last 2000 years. S. Afr. Archaeol. Bull. 46, 71–91 (1991).


    Google Scholar
     

  • 22.

    Semino, O., Santachiara-Benerecetti, A. S., Falaschi, F., Cavalli-Sforza, L. L. & Underhill, P. A. Ethiopians and khoisan share the deepest clades of the human Y-chromosome phylogeny. Am. J. Hum. Genet. 70, 265–268 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Schlebusch, C. M. & Jakobsson, M. Tales of human migration, admixture, and selection in Africa. Annu. Rev. Genomics Hum. Genet. 19, 405–428 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Vicente, M., Jakobsson, M., Ebbesen, P. & Schlebusch, C. M. Genetic affinities among Southern Africa hunter-gatherers and the impact of admixing farmer and herder populations. Mol. Biol. Evol. 36, 1849–1861 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Montinaro, F. & Capelli, C. The evolutionary history of Southern Africa. Curr. Opin. Genet. Dev. 53, 157–164 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Heine, B. & Konig, C. What can linguistics tell us about early Khoekhoe history?. S. Afr. Human. 20, 235–248 (2008).


    Google Scholar
     

  • 27.

    Haacke, W. H. G. Linguistic hypotheses on the origin of Namibian Khoekhoe speakers. S. Afr. Human. 20, 163–177 (2008).


    Google Scholar
     

  • 28.

    Guldemann, T. A linguist’s view : Khoe-Kwadi speakers as the earliest food-producers of southern Africa. https://www.ingentaconnect.com/content/sabinet/nmsasah/2008/00000020/00000001/art00007 (2008).

  • 29.

    Guillemard, I. Equating language, genes and subsistence? Discussion on the appearance of herding in southern Africa. Azania Archaeol. Res. Afr.55, 97–120 (2020).


    Google Scholar
     

  • 30.

    Schlebusch, C. M., Lombard, M. & Soodyall, H. MtDNA control region variation affirms diversity and deep sub-structure in populations from southern Africa. BMC Evol. Biol. 13, 56 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Breton, G. et al. Lactase persistence alleles reveal partial East African Ancestry of Southern African Khoe Pastoralists. Curr. Biol. 24, 852–858 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Ranciaro, A. et al. Genetic origins of lactase persistence and the spread of pastoralism in Africa. Am. J. Hum. Genet. 94, 496–510 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Ehret, C. The first spread of food production to southern Africa. In The Archaeological and Linguistic Reconstruction of African History (eds Ehret, C. & Posnansky, M.) 158–182 (University of California Press, Berkeley, 1982).


    Google Scholar
     

  • 34.

    Blench, R. Was there an interchange between Cushitic pastoralists and Khoisan speakers in the prehistory of Southern Africa and how can this be detected? Presented at Königswinter (2007).

  • 35.

    Muigai, A. W. T. & Hanotte, O. The origin of African sheep: archaeological and genetic perspectives. Afr. Archaeol. Rev. 30, 39–50 (2013).


    Google Scholar
     

  • 36.

    Soma, P., Kotze, A., Grobler, J. P. & van Wyk, J. B. South African sheep breeds: population genetic structure and conservation implications. Small Ruminant Res. 103, 112–119 (2012).


    Google Scholar
     

  • 37.

    Prendergast, M. E. Hunters and herders at the periphery: The spread of herding in eastern Africa. In People and Animals in Holocene Africa: Recent Advances in Archaeozoology. 2, 43 (eds Jousse, H. & Lesur, J.) (2011).

  • 38.

    Sadr, K. The first herders at the Cape of Good Hope. Afr. Archaeol. Rev. 15, 101–132 (1998).


    Google Scholar
     

  • 39.

    Smith, A. B. Early Herders in Southern Africa: a synthesis. In Animals and People: Archaeozoological Papers in Honour of Ina Plug (eds Badenhorst, S., Mitchell, P. & Driver, J.) 94–103 (Archaeopress, 2008).

  • 40.

    Kinahan, J. The origins and spread of pastoralism in Southern Africa. Oxf. Res. Encycl. Afr. Hist. https://doi.org/10.1093/acrefore/9780190277734.013.678 (2019).

    Article 

    Google Scholar
     

  • 41.

    Smith, A. B. & Jacobson, L. Excavations at Geduld and the appearance of early domestic stock in Namibia. S. Afr. Archaeol. Bull. 50, 3–14 (1995).


    Google Scholar
     

  • 42.

    Sandelowsky, B. Mirabib-an archaeological study in the Namib. Modoqua 10, 221–283 (1977).


    Google Scholar
     

  • 43.

    Wadley, L. Big Elephant Shelter and its role in the Holocene prehistory of central South West Africa. Cimbebasia 3, 2–75 (1979).


    Google Scholar
     

  • 44.

    Albrecht, M. et al. Oruwanje 95/1: a late Holocene stratigraphy in northwestern Namibia. Cimbebasia 17, 1–22 (2001).


    Google Scholar
     

  • 45.

    Sandelowsky, B. Archaeologically yours, Beatrice Sandelowsky: A personal journey Into the prehistory of Southern Africa, in particular Namibia (Namibia Scientific Society, Windhoek, 2004).


    Google Scholar
     

  • 46.

    Imalwa, E. Exploitation of animals during Holocene in Namibia. Examples of three archaeological from Erongo mountains and central Namib desert (Muséum national d’Histoire naturelle, Paris, 2009).


    Google Scholar
     

  • 47.

    Mauran, G. et al. First in situ pXRF analyses of rock paintings in Erongo, Namibia: results, current limits, and prospects. Archaeol. Anthropol. Sci. https://doi.org/10.1007/s12520-019-00787-7 (2019).

    Article 

    Google Scholar
     

  • 48.

    Scott, K. & Plug, I. Osteomorphology and osteometry versus aDNA in taxonomic identification of fragmentary sheep and sheep/goat bones from archaeological deposits: Blydefontein Shelter, Karoo. South Africa. S. Afr. Human. 21, 61–79 (2016).


    Google Scholar
     

  • 49.

    Horsburgh, K. A., Orton, J. & Klein, R. G. Beware the Springbok in sheep’s clothing: how secure are the faunal identifications upon which we build our models?. Afr. Archaeol. Rev. 33, 353–361 (2016).


    Google Scholar
     

  • 50.

    Horsburgh, K. A., Moreno-Mayar, J. V. & Klein, R. G. Counting and miscounting sheep: genetic evidence for pervasive misclassification of wild fauna as domestic stock. S. Afr. Human. 30, 53–69 (2017).


    Google Scholar
     

  • 51.

    Horsburgh, K. A. A reply to Plug 2017: science requires self-correction. Azania Archaeol. Res. Afr. 53, 114–118 (2018).


    Google Scholar
     

  • 52.

    Plug, I. Reply to Horsburgh et al. 2016: ‘Revisiting the Kalahari debate in the highlands’. Azania Archaeol. Res. Afr. 53, 98–113 (2018).


    Google Scholar
     

  • 53.

    Scott, K. & Plug, I. Beware of the sheep in eland’s clothing: A critique of ‘springbok in sheep’s clothing’, by Horsburgh et al. S. Afr. Archaeol. Bull. 74, 25 (2019).


    Google Scholar
     

  • 54.

    Salvagno, L. & Albarella, U. A morphometric system to distinguish sheep and goat postcranial bones. PLoS ONE 12, e0178543 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Kinahan, J. Archaeological evidence of domestic sheep in the Namib desert during the first millennium AD. J. Afr. Archaeol. 14, 7–17 (2016).


    Google Scholar
     

  • 56.

    Demarchi, B. et al. Protein sequences bound to mineral surfaces persist into deep time. eLife Sci. 5, e17092 (2016).


    Google Scholar
     

  • 57.

    Prendergast, M. E., Janzen, A., Buckley, M. & Grillo, K. M. Sorting the sheep from the goats in the Pastoral Neolithic: morphological and biomolecular approaches at Luxmanda, Tanzania. Archaeol. Anthropol. Sci. https://doi.org/10.1007/s12520-018-0737-0 (2018).

    Article 

    Google Scholar
     

  • 58.

    Buckley, M. Zooarchaeology by mass spectrometry (ZooMS) collagen fingerprinting for the species identification of archaeological bone fragments. In Zooarchaeology in Practice (eds Giovas, C. & Lefebvre, M.) 227–247 (Springer, Cham, 2018). https://doi.org/10.1007/978-3-319-64763-0_12.


    Google Scholar
     

  • 59.

    Brown, S. et al. Identification of a new hominin bone from Denisova Cave, Siberia using collagen fingerprinting and mitochondrial DNA analysis. Sci. Rep. 6, 23559 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Hendy, J. et al. A guide to ancient protein studies. Nat. Ecol. Evol. 2, 791 (2018).

    PubMed 

    Google Scholar
     

  • 61.

    Chen, F. et al. A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau. Nature https://doi.org/10.1038/s41586-019-1139-x (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Welker, F. et al. Middle Pleistocene protein sequences from the rhinoceros genus Stephanorhinus and the phylogeny of extant and extinct Middle/Late Pleistocene Rhinocerotidae. PeerJ 5, e3033 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 63.

    Welker, F. et al. Ancient proteins resolve the evolutionary history of Darwin’s South American ungulates. Nature 522, 81–84 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 64.

    Welker, F. et al. Enamel proteome shows that Gigantopithecus was an early diverging pongine. Nature https://doi.org/10.1038/s41586-019-1728-8 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 65.

    Cappellini, E. et al. Early Pleistocene enamel proteome from Dmanisi resolves Stephanorhinus phylogeny. Nature 574, 103–107 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 66.

    Parker, G. J. et al. Sex estimation using sexually dimorphic amelogenin protein fragments in human enamel. J. Archaeol. Sci. https://doi.org/10.1016/j.jas.2018.08.011 (2018).

    Article 

    Google Scholar
     

  • 67.

    Lugli, F. et al. Enamel peptides reveal the sex of the Late Antique ‘Lovers of Modena’. Sci. Rep. 9, 1–8 (2019).

    ADS 

    Google Scholar
     

  • 68.

    Hendy, J. et al. The challenge of identifying tuberculosis proteins in archaeological tissues. J. Archaeol. Sci. 66, 146–153 (2016).

    CAS 

    Google Scholar
     

  • 69.

    Buckley, M. et al. Distinguishing between archaeological sheep and goat bones using a single collagen peptide. J. Archaeol. Sci. 37, 13–20 (2010).


    Google Scholar
     

  • 70.

    Buckley, M. & Kansa, S. W. Collagen fingerprinting of archaeological bone and teeth remains from Domuztepe, South Eastern Turkey. Archaeol. Anthropol. Sci. 3, 271–280 (2011).


    Google Scholar
     

  • 71.

    Gershon, P. D. Cleaved and missed sites for trypsin, Lys-C, and Lys-N can be predicted with high confidence on the basis of sequence context. J. Proteome Res. 13, 702-709 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 72.

    Lebon, M., Reiche, I., Gallet, X., Bellot-Gurlet, L. & Zazzo, A. Rapid quantification of bone collagen content by ATR-FTIR spectroscopy. Radiocarbon 10, 1–15 (2016).


    Google Scholar
     

  • 73.

    Bronk Ramsey, C. OxCal Program, Version 4.3. (Oxford Radiocarbon Accelerator Unit: University of Oxford, 2017).

  • 74.

    Hogg, A. G. et al. SHCal13 Southern Hemisphere Calibration, 0–50,000 Years cal BP. Radiocarbon 55, 1889–1903 (2013).

    CAS 

    Google Scholar
     

  • 75.

    Tyson, P. D. & Lindesay, J. A. The climate of the last 2000 years in southern Africa. Holocene 2, 271–278 (1992).

    ADS 

    Google Scholar
     

  • 76.

    Tyson, P., Karlen, W., Holmgren, K. & Heiss, G. The Little Ice Age and medieval warming in South Africa. S. Afr. J. Sci. 96, 121–126 (2000).

    CAS 

    Google Scholar
     

  • 77.

    Heine, K. Little Ice Age climatic fluctuations in the Namib Desert, Namibia, and adjacent areas: Evidence of exceptionally large floods from slack water deposits and desert soil sequences. In Paleoecology of Quaternary Drylands (eds Smykatz-Kloss, W. & Felix-Henningsen, P.) 137–165 (Springer, Berlin, 2004). https://doi.org/10.1007/978-3-540-44930-0_9.


    Google Scholar
     

  • 78.

    Sandelowsky, B. H. Archaeological investigations at Mirabib Hill rock shelter. Goodwin Ser. 2, 65–72 (1974).


    Google Scholar
     

  • 79.

    Pálsdóttir, A. H., Bläuer, A., Rannamäe, E., Boessenkool, S. & Hallsson, J. H. Not a limitless resource: ethics and guidelines for destructive sampling of archaeofaunal remains. R. Soc. Open Sci. 6, 191059 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 80.

    Hendy, J. et al. Ancient proteins from ceramic vessels at Çatalhöyük West reveal the hidden cuisine of early farmers. Nat. Commun. 9, 4064 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 81.

    Colonese, A. C. et al. New criteria for the molecular identification of cereal grains associated with archaeological artefacts. Sci. Rep. 7, 6633 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 82.

    Greco, E. et al. Proteomic analyses on an ancient Egyptian cheese and biomolecular evidence of brucellosis. Anal. Chem. 90, 9673–9676 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 83.

    Warinner, C. et al. Direct evidence of milk consumption from ancient human dental calculus. Sci. Rep. 4, 7104 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 84.

    Buckley, S., Usai, D., Jakob, T., Radini, A. & Hardy, K. Dental calculus reveals unique insights into food items, cooking and plant processing in prehistoric central sudan. PLoS ONE 9, e100808 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 85.

    Balasse, M. & Tresset, A. Environmental constraints on the reproductive activity of domestic sheep and cattle: what latitude for the herder?. Anthropozoologica 42(2), 71–88 (2007).


    Google Scholar
     

  • 86.

    Zhang, J. et al. PEAKS DB: de novo sequencing assisted database search for sensitive and accurate peptide identification. Mol. Cell Proteom. 11, M111.010587 (2012).


    Google Scholar
     

  • 87.

    Kearse, M. et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 88.

    Perkins, D. N., Pappin, D. J., Creasy, D. M. & Cottrell, J. S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 89.

    Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucl. Acids Res. 47, D442–D450 (2019).

    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *