• 1.

    Yang, W. & Yuste, R. In vivo imaging of neural activity. Nat. Methods 14, 349–359 (2017).

    Article 

    Google Scholar
     

  • 2.

    Wu, D. et al. Fluorescent chemosensors: the past, present and future. Chem. Soc. Rev. 46, 7105–7123 (2017).

    Article 

    Google Scholar
     

  • 3.

    Carrasco-Zevallos, O. M. et al. Review of intraoperative optical coherence tomography: technology and applications [Invited]. Biomed. Opt. Express 8, 1607 (2017).

    Article 

    Google Scholar
     

  • 4.

    Riley, R. S. & Day, E. S. Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 9, e1449 (2017).

    Article 

    Google Scholar
     

  • 5.

    Kim, J., Kim, J., Jeong, C. & Kim, W. J. Synergistic nanomedicine by combined gene and photothermal therapy. Adv. Drug Deliv. Rev. 98, 99–112 (2016).

    Article 

    Google Scholar
     

  • 6.

    Li, Z. et al. Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy. Biomaterials 74, 144–154 (2016).

    Article 

    Google Scholar
     

  • 7.

    Thompson, A. C., Stoddart, P. R. & Jansen, E. D. Optical stimulation of neurons. Curr. Mol. Imaging 3, 162–177 (2014).

    Article 

    Google Scholar
     

  • 8.

    Fenno, L., Yizhar, O. & Deisseroth, K. The development and application of optogenetics. Annu. Rev. Neurosci. 34, 389–412 (2011).

    Article 

    Google Scholar
     

  • 9.

    de Freitas, L. F. & Hamblin, M. R. Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J. Sel. Top. Quantum Electron. 22, 348–364 (2016).

    Article 

    Google Scholar
     

  • 10.

    Ntziachristos, V. Going deeper than microscopy: the optical imaging frontier in biology. Nat. Methods 7, 603–614 (2010).

    Article 

    Google Scholar
     

  • 11.

    Deng, X. & Gu, M. Penetration depth of single-, two-, and three-photon fluorescence microscopic imaging through human cortex structures: Monte Carlo simulation. Appl. Opt. 42, 3321 (2003).

    Article 

    Google Scholar
     

  • 12.

    Ziv, Y. & Ghosh, K. K. Miniature microscopes for large-scale imaging of neuronal activity in freely behaving rodents. Curr. Opin. Neurobiol. 32, 141–147 (2015).

    Article 

    Google Scholar
     

  • 13.

    Wu, F. et al. An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications. J. Neural Eng. 10, 056012 (2013).

    Article 

    Google Scholar
     

  • 14.

    Hoffman, L. et al. High-density optrode-electrode neural probe using SixNy photonics for in vivo optogenetics. In 2015 IEEE International Electron Devices Meeting (IEDM) 29.5.1–29.5.4 (IEEE, 2015). https://doi.org/10.1109/IEDM.2015.7409795.

  • 15.

    Schwaerzle, M., Paul, O. & Ruther, P. Compact silicon-based optrode with integrated laser diode chips, SU-8 waveguides and platinum electrodes for optogenetic applications. J. Micromech. Microeng. 27, 065004 (2017).

    Article 

    Google Scholar
     

  • 16.

    Oh, G., Chung, E. & Yun, S. H. Optical fibers for high-resolution in vivo microendoscopic fluorescence imaging. Opt. Fiber Technol. 19, 760–771 (2013).

    Article 

    Google Scholar
     

  • 17.

    Guo, Q. et al. Multi-channel fiber photometry for population neuronal activity recording. Biomed. Opt. Express 6, 3919 (2015).

    Article 

    Google Scholar
     

  • 18.

    Reddy, J. W., Kimukin, I., Ahmed, Z., Towe, E. & Chamanzar, M. High density, double-sided, flexible optoelectrical neural probes with embedded micro-LEDs. Front. Neurosci. 13, 572 (2019).

    Article 

    Google Scholar
     

  • 19.

    Chamanzar, M., Denman, D. J., Blanche, T. J. & Maharbiz, M. M. Ultracompact optoflex neural probes for high-resolution electrophysiology and optogenetic stimulation. In 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS) 682–685 (IEEE, 2015). https://doi.org/10.1109/MEMSYS.2015.7051049.

  • 20.

    Klein, E., Gossler, C., Paul, O. & Ruther, P. High-density μLED-based optical cochlear implant with improved thermomechanical behavior. Front. Neurosci. 12, 659 (2018).

    Article 

    Google Scholar
     

  • 21.

    Kozai, T. D. Y., Jaquins-Gerstl, A. S., Vazquez, A. L., Michael, A. C. & Cui, X. T. Brain tissue responses to neural implants impact signal sensitivity and intervention strategies. ACS Chem. Neurosci. 6, 48–67 (2015).

    Article 

    Google Scholar
     

  • 22.

    Moshayedi, P. et al. The relationship between glial cell mechanosensitivity and foreign body reactions in the central nervous system. Biomaterials 35, 3919–3925 (2014).

    Article 

    Google Scholar
     

  • 23.

    Weltman, A. et al. Flexible, penetrating brain probes enabled by advances in polymer microfabrication. Micromachines 7, 180 (2016).

    Article 

    Google Scholar
     

  • 24.

    Thomson, D. et al. Roadmap on silicon photonics. J. Opt. 18, 073003 (2016).

    Article 

    Google Scholar
     

  • 25.

    Ersen, A. & Sahin, M. Polydimethylsiloxane-based optical waveguides for tetherless powering of floating microstimulators. J. Biomed. Opt. 22, 055005 (2017).

    Article 

    Google Scholar
     

  • 26.

    Rehberger, F. et al. Lichtwellenleiter aus PDMS für biomedizinische Anwendungen. Biomed. Eng. Tech. 59, S1068–S1071 (2014).


    Google Scholar
     

  • 27.

    Kwon, K. Y., Lee, H.-M., Ghovanloo, M., Weber, A. & Li, W. Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics application. Front. Syst. Neurosci. 9, 1–12 (2015).

    Article 

    Google Scholar
     

  • 28.

    Son, Y. et al. In vivo optical modulation of neural signals using monolithically integrated two-dimensional neural probe arrays. Sci. Rep. 5, 15466 (2015).

    Article 

    Google Scholar
     

  • 29.

    Szarowski, D. H. et al. Brain responses to micro-machined silicon devices. Brain Res. 983, 23–35 (2003).

    Article 

    Google Scholar
     

  • 30.

    Lee, H. C. et al. Histological evaluation of flexible neural implants; flexibility limit for reducing the tissue response? J. Neural Eng. 14, 036026 (2017).

    Article 

    Google Scholar
     

  • 31.

    Heo, C. et al. A soft, transparent, freely accessible cranial window for chronic imaging and electrophysiology. Sci. Rep. 6, 1–11 (2016).

    Article 

    Google Scholar
     

  • 32.

    Minev, I. R. et al. Electronic dura mater for long-term multimodal neural interfaces. Science. 347, 159–163 (2015).

  • 33.

    FDA. 21CFR878.3540 (FDA Code of Federal Regulations, Title 21) (FDA, 2018).

  • 34.

    Stark, N. Literature review: biological safety of Parylene C. Med. Plast. Biomater. 3, 30–35 (1996).

  • 35.

    Marjanović-Balaban, Ž. & Jelić, D. Polymeric biomaterials in clinical practice. in Biomaterials in Clinical Practice 101–117 (Springer International Publishing, 2018). https://doi.org/10.1007/978-3-319-68025-5_4.

  • 36.

    Jeong, Y. S., Ratier, B., Moliton, A. & Guyard, L. UV-visible and infrared characterization of poly(p-xylylene) films for waveguide applications and OLED encapsulation. Synth. Metals. 127, 189–193 (2002).

  • 37.

    Libbrecht, S. et al. Proximal and distal modulation of neural activity by spatially confined optogenetic activation with an integrated high-density optoelectrode. J. Neurophysiol. 120, 149–161 (2018).

  • 38.

    Zorzos, A. N., Scholvin, J., Boyden, E. S. & Fonstad, C. G. Three-dimensional multiwaveguide probe array for light delivery to distributed brain circuits. Opt. Lett. 37, 4841 (2012).

  • 39.

    Klapoetke, N. C. et al. Independent optical excitation of distinct neural populations. Nat. Methods. 11, 338–346 (2014).

  • 40.

    Reddy, J. W. & Chamanzar, M. Low-loss flexible Parylene photonic waveguides for optical implants. Opt. Lett. 43, 4112 (2018).

  • 41.

    Ahmed, Z., Reddy, J. W., Teichert, T. & Chamanzar, M. High-density steeltrodes: a novel platform for high resolution recording in primates*. In 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER) 835–838 (IEEE, 2019). https://doi.org/10.1109/NER.2019.8716921.

  • 42.

    Ahmed, Z. et al. Flexible ultra-resolution subdermal EEG probes. In 2018 IEEE Biomedical Circuits and Systems Conference, BioCAS 2018—Proceedings (Institute of Electrical and Electronics Engineers Inc., 2018). https://doi.org/10.1109/BIOCAS.2018.8584672.

  • 43.

    Rakić, A. D., Djurišić, A. B., Elazar, J. M. & Majewski, M. L. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37, 5271 (1998).

  • 44.

    Nguyen, J. K. et al. Mechanically-compliant intracortical implants reduce theneuroinflammatory response. J. Neural Eng. 11, 056014 (2014).

    Article 

    Google Scholar
     

  • 45.

    Mendrela, A. E. et al. A high-resolution opto-electrophysiology system with a miniature integrated headstage. IEEE Trans. Biomed. Circuits Syst. 12, 1065–1075 (2018).

  • 46.

    Kalmykov, A. et al. Organ-on-e-chip: three-dimensional self-rolled biosensor array for electrical interrogations of human electrogenic spheroids. Sci. Adv 5, eaax0729 (2019).

    Article 

    Google Scholar
     

  • 47.

    Lecomte, A., Descamps, E. & Bergaud, C. A review on mechanical considerations for chronically-implanted neural probes. J. Neural Eng. 15, 031001 (2018).

  • 48.

    Xiang, Z. et al. Ultra-thin flexible polyimide neural probe embedded in a dissolvable maltose-coated microneedle. J. Micromech. Microeng. 24, 065015 (2014).

  • 49.

    Pas, J. et al. A bilayered PVA/PLGA-bioresorbable shuttle to improve the implantation of flexible neural probes. J. Neural Eng. 15, 065001 (2018).

  • 50.

    Shoffstall, A. J. et al. A mosquito inspired strategy to implant microprobes into the brain. Sci. Rep. 8, 122 (2018).

  • 51.

    Rola, K. P. & Zubel, I. Triton surfactant as an additive to KOH silicon etchant. J. Microelectromechanical Syst. 22, 1373–1382 (2013).

  • 52.

    Chen, W., Lam, R. H. W. & Fu, J. Photolithographic surface micromachining of polydimethylsiloxane (PDMS). Lab Chip. 12, 391–5 (2012).

  • 53.

    Lim, A. E.-J. et al. Review of silicon photonics foundry efforts. IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2014).

  • 54.

    Kuo, J. T. W. et al. Novel flexible Parylene neural probe with 3D sheath structure for enhancing tissue integration. Lab Chip. 13, 554–561 (2013).

  • 55.

    Hass, G. & Waylonis, J. E. Optical constants and reflectance and transmittance of evaporated aluminum in the visible and ultraviolet*. J. Opt. Soc. Am. 51, 719 (1961).

  • 56.

    Garra, J. et al. Dry etching of polydimethylsiloxane for microfluidic systems. J. Vac. Sci. Technol. A Vac., Surf., Film. 20, 975–982 (2002).

  • 57.

    Palik, E. D. Handbook of Optical Constants of Solids. III (Academic Press, 1998).

  • 58.

    Hopcroft, M. A., Nix, W. D. & Kenny, T. W. What is the Young’s modulus of silicon? J. Microelectromechanical Syst. 19, 229–238 (2010).

  • 59.

    Khan, A., Philip, J. & Hess, P. Young’s modulus of silicon nitride used in scanning force microscope cantilevers. J. Appl. Phys. 95, 1667–1672 (2004).

  • 60.

    Hassler, C., von Metzen, R. P., Ruther, P. & Stieglitz, T. Characterization of Parylene C as an encapsulation material for implanted neural prostheses. J. Biomed. Mater. Res. Part B Appl. Biomater. 93, 266–274 (2010).

  • 61.

    Johnston, I. D., McCluskey, D. K., Tan, C. K. L. & Tracey, M. C. Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J. Micromech. Microeng. 24, 035017 (2014).

  • 62.

    Budday, S. et al. Mechanical properties of gray and white matter brain tissue by indentation. J. Mech. Behav. Biomed. Mater. 46, 318–330 (2015).

  • 63.

    McKee, C. T., Last, J. A., Russell, P. & Murphy, C. J. Indentation versus tensile measurements of Young’s modulus for soft biological tissues. Tissue Eng. Part B. Rev. 17, 155–64 (2011).

  • 64.

    Zorzos, A. N., Boyden, E. S. & Fonstad, C. G. Multiwaveguide implantable probe for light delivery to sets of distributed brain targets. Opt. Lett. 35, 4133 (2010).

  • 65.

    Kampasi, K. et al. Fiberless multicolor neural optoelectrode for in vivo circuit analysis. Sci. Rep. 6, 30961 (2016).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *