Pathways and challenges towards a complete characterization of microgels


  • 1.

    Saunders, B. R. & Vincent, B. Microgel particles as model colloids: theory, properties and applications. Adv. Colloid Interface Sci. 80, 1–25 (1999).

    CAS 

    Google Scholar
     

  • 2.

    Fernandez-Nieves, A., Wyss, H., Mattsson, J. & Weitz, D. A., Microgel Suspensions: Fundamentals and Applications (John Wiley & Sons, 2011).

  • 3.

    Brijitta, J. & Schurtenberger, P. Responsive hydrogel colloids: Structure, interactions, phase behaviour, and equilibrium and non-equilibrium transitions of microgel dispersions. Curr. Opin. Colloid Interface Sci. 40, 87–103 (2019).

    CAS 

    Google Scholar
     

  • 4.

    Cloitre, M., Borrega, R., Monti, F. & Leibler, L. Structure and flow of polyelectrolyte microgels: from suspensions to glasses. Comptes Rendus Phys. 4, 221–230 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • 5.

    Schneider, J., Wiemann, M., Rabe, A. & Bartsch, E. On tuning microgel character and softness of cross-linked polystyrene particles. Soft Matter 13, 445–457 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Pelton, R. H. & Chibante, P. Preparation of aqueous latices with n-isopropylacrylamide. Colloids Surf. 20, 247–256 (1986).

    CAS 

    Google Scholar
     

  • 7.

    Wyss, H. M., Franke, T., Mele, E. & Weitz, D. A. Capillary micromechanics: measuring the elasticity of microscopic soft objects. Soft Matter 6, 4550–4555 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 8.

    Zhang, Z. et al. Thermal vestige of the zero-temperature jamming transition. Nature 459, 230–233 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Fernández-Rodríguez, M. Á. et al. Tunable 2d binary colloidal alloys for soft nanotemplating. Nanoscale 10, 22189–22195 (2018).

    PubMed 

    Google Scholar
     

  • 10.

    Li, X., Gao, Y. & Serpe, M. J. Stimuli-responsive assemblies for sensing applications. Gels 2, 8 (2016).

    PubMed Central 

    Google Scholar
     

  • 11.

    Choe, A. et al. Stretchable and wearable colorimetric patches based on thermoresponsive plasmonic microgels embedded in a hydrogel film. NPG Asia Mater. 10, 912–922 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 12.

    Plamper, F. A. & Richtering, W. Functional microgels and microgel systems. Acc. Chem. Res. 50, 131–140 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Sánchez-Iglesias, A. et al. Synthesis of multifunctional composite microgels via in situ ni growth on pnipam-coated au nanoparticles. ACS Nano 3, 3184–3190 (2009).

    PubMed 

    Google Scholar
     

  • 14.

    Andablo-Reyes, E. et al. Microgels as viscosity modifiers influence lubrication performance of continuum. Soft Matter 15, 9614–9624 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Yue, M., Hoshino, Y., Ohshiro, Y., Imamura, K. & Miura, Y. Temperature-responsive microgel films as reversible carbon dioxide absorbents in wet environment. Angew. Chem. Int. Ed. 53, 2654–2657 (2014).

    CAS 

    Google Scholar
     

  • 16.

    Highley, C. B., Song, K. H., Daly, A. C. & Burdick, J. A. Jammed microgel inks for 3d printing applications. Adv. Sci. 6, 1801076 (2019).


    Google Scholar
     

  • 17.

    Murthy, N. et al. A macromolecular delivery vehicle for protein-based vaccines: acid-degradable protein-loaded microgels. Proc. Natl Acad. Sci. USA 100, 4995–5000 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Debord, J. D., Eustis, S., S, ByulDebord, Lofye, M. T. & Lyon, L. A. Color-tunable colloidal crystals from soft hydrogel nanoparticles. Adv. Mater. 14, 658–662 (2002).

    CAS 

    Google Scholar
     

  • 19.

    Isapour, G. & Lattuada, M. Bioinspired stimuli-responsive color-changing systems. Adv. Mater. 30, 1707069 (2018).


    Google Scholar
     

  • 20.

    Hyatt, J. S. et al. Segregation of mass at the periphery of n-isopropylacrylamide-co-acrylic-acid microgels at high temperatures. Phys. Rev. E 92, 030302 (2015).

    ADS 

    Google Scholar
     

  • 21.

    Rubinstein, M. et al. Polymer Physics, Vol. 23 (Oxford University Press, New York, 2003).

  • 22.

    Fernandez-Barbero, A., Fernandez-Nieves, A., Grillo, I. & Lopez-Cabarcos, E. Structural modifications in the swelling of inhomogeneous microgels by light and neutron scattering. Phys. Rev. E 66, 051803 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • 23.

    Wu, X., Pelton, R. H., Hamielec, A. E., Woods, D. R. & McPhee, W. The kinetics of poly (n-isopropylacrylamide) microgel latex formation. Colloid Polym. Sci. 272, 467–477 (1994).

    CAS 

    Google Scholar
     

  • 24.

    Smeets, N. M. B. & Hoare, T. Designing responsive microgels for drug delivery applications. J. Polym. Sci. Part A: Polym. Chem. 51, 3027–3043 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • 25.

    Conley, G. M., Zhang, C., Aebischer, P., Harden, J. L. & Scheffold, F. Relationship between rheology and structure of interpenetrating, deforming and compressing microgels. Nat. Commun. 10, 1–8 (2019).

    CAS 

    Google Scholar
     

  • 26.

    Lyon, L. A. & Fernandez-Nieves, A. The polymer/colloid duality of microgel suspensions. Annu. Rev. Phys. Chem. 63, 25–43 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Stieger, M., Richtering, W., Pedersen, J. S. & Lindner, P. Small-angle neutron scattering study of structural changes in temperature sensitive microgel colloids. J. Chem. Phys. 120, 6197–6206 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Gasser, U. et al. Form factor of pnipam microgels in overpacked states. J. Chem. Phys. 141, 034901 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Zemb, T. & Lindner, P. Neutrons, X-Rays and Light: Scattering Methods Applied to Soft Condensed Matter (Elsevier, North Holland, 2002).

  • 30.

    Reufer, M., Díaz-Leyva, P., Lynch, I. & Scheffold, F. Temperature-sensitive poly (n-isopropyl-acrylamide) microgel particles: a light scattering study. Eur. Phys. J. E: Soft Matter Biol. Phys. 28, 165–171 (2009).

    CAS 

    Google Scholar
     

  • 31.

    Dubbert, J. et al. How hollow are thermoresponsive hollow nanogels? Macromolecules 47, 8700–8708 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 32.

    TG, Mason & MY, Lin Density profiles of temperature-sensitive microgel particles. Phys. Rev. E 71, 040801 (2005).


    Google Scholar
     

  • 33.

    Cors, M. et al. Spatial distribution of core monomers in acrylamide-based core-shell microgels with linear swelling behaviour. Sci. Rep. 9, 1–11 (2019).

    CAS 

    Google Scholar
     

  • 34.

    Mohanty, P. S. et al. Interpenetration of polymeric microgels at ultrahigh densities. Sci. Rep. 7, 1487 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Di Lorenzo, F. & Seiffert, S. Nanostructural heterogeneity in polymer networks and gels. Polym. Chem. 6, 5515–5528 (2015).


    Google Scholar
     

  • 36.

    Witte, J. et al. A comparison of the network structure and inner dynamics of homogeneously and heterogeneously crosslinked pnipam microgels with high crosslinker content. Soft Matter 15, 1053–1064 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Van Blaaderen, A., Imhof, A., W, Hage & A, Vrij Three-dimensional imaging of submicrometer colloidal particles in concentrated suspensions using confocal scanning laser microscopy. Langmuir 8, 1514–1517 (1992).


    Google Scholar
     

  • 38.

    Paloli, D., Mohanty, P. S., Crassous, J. J., Zaccarelli, E. & Schurtenberger, P. Fluid–solid transitions in soft-repulsive colloids. Soft Matter 9, 3000–3004 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • 39.

    Nöjd, S., Mohanty, P. S., Bagheri, P., Yethiraj, A. & Schurtenberger, P. Electric field driven self-assembly of ionic microgels. Soft Matter 9, 9199–9207 (2013).

    ADS 

    Google Scholar
     

  • 40.

    Patterson, G., Davidson, M., Manley, S. & Lippincott-Schwartz, J. Superresolution imaging using single-molecule localization. Annu. Rev. Phys. Chem. 61, 345–367 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Wöll, D. & Flors, C. Super-resolution fluorescence imaging for materials science. Small Methods 1, 1700191 (2017).


    Google Scholar
     

  • 42.

    Aloi, A. & Voets, I. K. Soft matter nanoscopy. Curr. Opin. Colloid Interface Sci. 34, 59–73 (2018).

    CAS 

    Google Scholar
     

  • 43.

    Kegel, W. K. & van Blaaderen, A. Direct observation of dynamical heterogeneities in colloidal hard-sphere suspensions. Science 287, 290–293 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Leung, B. O. & Chou, K. C. Review of super-resolution fluorescence microscopy for biology. Appl. Spectrosc. 65, 967–980 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Klar, T. A., Jakobs, S., Dyba, M., Egner, A. & Hell, S. W. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl Acad. Sci. 97, 8206–8210 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 47.

    Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (storm). Nat. Methods 3, 793–796 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Heilemann, M. et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew. Chem. Int. Ed. 47, 6172–6176 (2008).

    CAS 

    Google Scholar
     

  • 49.

    Purohit, A., Centeno, S. P., Wypysek, S. K., Richtering, W. & Wöll, D. Microgel paint–nanoscopic polarity imaging of adaptive microgels without covalent labelling. Chem. Sci. 10, 10336–10342 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Hell, S. W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Tam, J. & Merino, D. Stochastic optical reconstruction microscopy (storm) in comparison with stimulated emission depletion (sted) and other imaging methods. J. Neurochem. 135, 643–658 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 52.

    Rittweger, E., Han, K. Y., Irvine, S. E., Eggeling, C. & Hell, S. W. Sted microscopy reveals crystal colour centres with nanometric resolution. Nat. Photonics 3, 144 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • 53.

    Huang, B., Wang, W., Bates, M. & Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Hauser, M. et al. Correlative super-resolution microscopy: new dimensions and new opportunities. Chem. Rev. 117, 7428–7456 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 55.

    Huang, F. et al. Ultra-high resolution 3d imaging of whole cells. Cell 166, 1028–1040 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 56.

    Balzarotti, F. et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 355, 606–612 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 57.

    Gelissen, A. P. H. et al. 3d structures of responsive nanocompartmentalized microgels. Nano Lett. 16, 7295–7301 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    Conley, G. M., Nöjd, S., Braibanti, M., Schurtenberger, P. & Scheffold, F. Superresolution microscopy of the volume phase transition of pnipam microgels. Colloids Surf. A: Physicochem. Eng. Asp. 499, 18–23 (2016).

    CAS 

    Google Scholar
     

  • 59.

    Dempsey, G. T., Vaughan, J. C., Chen, K. H., Bates, M. & Zhuang, X. Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat. Methods 8, 1027 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Holmqvist, P., Mohanty, P. S., Nägele, G., Schurtenberger, P. & Heinen, M. Structure and dynamics of loosely cross-linked ionic microgel dispersions in the fluid regime. Phys. Rev. Lett. 109, 048302 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 61.

    Siemes, E. et al. Nanoscopic visualization of cross-linking density in polymer networks with diarylethene photoswitches. Angew. Chem. Int. Ed. 57, 12280–12284 (2018).

    CAS 

    Google Scholar
     

  • 62.

    Scheffold, F. et al. Brushlike interactions between thermoresponsive microgel particles. Phys. Rev. Lett. 104, 128304 (2010).

    ADS 
    PubMed 

    Google Scholar
     

  • 63.

    Romeo, G. & Ciamarra, M. P. Elasticity of compressed microgel suspensions. Soft Matter 9, 5401–5406 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • 64.

    Serpe, M. J., Kim, J. & Lyon, L. A. Colloidal hydrogel microlenses. Adv. Mater. 16, 184–187 (2004).

    CAS 

    Google Scholar
     

  • 65.

    Crassous, J. J. et al. Direct imaging of temperature-sensitive core-shell latexes by cryogenic transmission electron microscopy. Colloid Polym. Sci. 286, 805–812 (2008).

    CAS 

    Google Scholar
     

  • 66.

    Höfl, S., Zitzler, L., Hellweg, T., Herminghaus, S. & Mugele, F. Volume phase transition of smart microgels in bulk solution and adsorbed at an interface: A combined afm, dynamic light, and small angle neutron scattering study. Polymer 48, 245–254 (2007).


    Google Scholar
     

  • 67.

    South, A. B. & Lyon, L. A. Direct observation of microgel erosion via in-liquid atomic force microscopy. Chem. Mater. 22, 3300–3306 (2010).

    CAS 

    Google Scholar
     

  • 68.

    Schulte, M. F., Scotti, A., Gelissen, A. P. H., Richtering, W. & Mourran, A. Probing the internal heterogeneity of responsive microgels adsorbed to an interface by a sharp sfm tip: comparing core–shell and hollow microgels. Langmuir 34, 4150–4158 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 69.

    Matsui, S., Nishizawa, Y., Uchihashi, T. & Suzuki, D. Monitoring thermoresponsive morphological changes in individual hydrogel microspheres. ACS Omega 3, 10836–10842 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 70.

    Aufderhorst-Roberts, A. et al. Nanoscale mechanics of microgel particles. Nanoscale 10, 16050–16061 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 71.

    Peter, C. & Kremer, K. Multiscale simulation of soft matter systems. Faraday Discuss. 144, 9–24 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 72.

    Ghavami, A., Kobayashi, H. & Winkler, R. G. Internal dynamics of microgels: a mesoscale hydrodynamic simulation study. J. Chem. Phys. 145, 244902 (2016).

    ADS 
    PubMed 

    Google Scholar
     

  • 73.

    Nikolov, S., Fernandez-Nieves, A. & Alexeev, A. Mesoscale modeling of microgel mechanics and kinetics through the swelling transition. Appl. Math. Mech. 39, 47–62 (2018).

    MathSciNet 

    Google Scholar
     

  • 74.

    Pelton, R. Poly (n-isopropylacrylamide)(pnipam) is never hydrophobic. J. Colloid Interface Sci. 348, 673–674 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 75.

    Gnan, N., Rovigatti, L., Bergman, M. & Zaccarelli, E. In silico synthesis of microgel particles. Macromolecules 50, 8777–8786 https://doi.org/10.1021/acs.macromol.7b01600 (2017). further permissions related to the material excerpted should be directed to the American Chemical Society.

  • 76.

    Ninarello, A. et al. Modeling microgels with a controlled structure across the volume phase transition. Macromolecules 52, 7584–7592 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 77.

    Hunter, R. J. Foundations of Colloid Science (Oxford University Press, 2001).

  • 78.

    Israelachvili, J. N. Intermolecular and Surface Forces (Academic Press, 2015).

  • 79.

    Liao, W., Zhang, Y., Guan, Y. & Zhu, X. X. Gelation kinetics of thermosensitive pnipam microgel dispersions. Macromol. Chem. Phys. 212, 2052–2060 (2011).

    CAS 

    Google Scholar
     

  • 80.

    Minami, S., Suzuki, D. & Urayama, K. Rheological aspects of colloidal gels in thermoresponsive microgel suspensions: Formation, structure, linear and nonlinear viscoelasticity. Curr. Opin. Colloid Interface Sci. 43, 113–124 (2019).

  • 81.

    Wu, C. & Wang, X. Globule-to-coil transition of a single homopolymer chain in solution. Phys. Rev. Lett. 80, 4092 (1998).

    ADS 
    CAS 

    Google Scholar
     

  • 82.

    Brugnoni, M. et al. Swelling of a responsive network within different constraints in multi-thermosensitive microgels. Macromolecules 51, 2662–2671 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 83.

    Hoare, T. & Pelton, R. Highly ph and temperature responsive microgels functionalized with vinylacetic acid. Macromolecules 37, 2544–2550 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • 84.

    Fernández-Nieves, A., Fernández-Barbero, A., Vincent, B. & De las Nieves, F. J. Osmotic de-swelling of ionic microgel particles. J. Chem. Phys. 119, 10383–10388 (2003).

    ADS 

    Google Scholar
     

  • 85.

    Still, T., Chen, K., Alsayed, A. M., Aptowicz, K. B. & Yodh, A. G. Synthesis of micrometer-size poly (n-isopropylacrylamide) microgel particles with homogeneous crosslinker density and diameter control. J. Colloid Interface Sci. 405, 96–102 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 86.

    Bergmann, S., Wrede, O., Huser, T. & Hellweg, T. Super-resolution optical microscopy resolves network morphology of smart colloidal microgels. Phys. Chem. Chem. Phys. 20, 5074–5083 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 87.

    Glatter, O. Scattering Methods and Their Application in Colloid and Interface Science (Elsevier, 2018).

  • 88.

    Karanastasis, A. A. et al. 3d mapping of nanoscale crosslink heterogeneities in microgels. Mater. Horiz. 5, 1130–1136 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 89.

    Boon, N. & Schurtenberger, P. Swelling of micro-hydrogels with a crosslinker gradient. Phys. Chem. Chem. Phys. 19, 23740–23746 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 90.

    Moreno, A. J. & Verso, F. L. Computational investigation of microgels: synthesis and effect of the microstructure on the deswelling behavior. Soft Matter 14, 7083–7096 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 91.

    Bergman, M. J. et al. A new look at effective interactions between microgel particles. Nat. Commun. 9, 5039 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 92.

    Nöjd, S. et al. Deswelling behaviour of ionic microgel particles from low to ultra-high densities. Soft Matter 14, 4150–4159 (2018).

    ADS 
    PubMed 

    Google Scholar
     

  • 93.

    Bergman, M. J., Pedersen, J. S., Schurtenberger, P. & Boon, N. Controlling the morphology of microgels by ionic stimuli. Soft Matter 16, 2786–2794 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 94.

    Grimm, J. B. et al. Bright photoactivatable fluorophores for single-molecule imaging. Nat. Methods 13, 985–988 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 95.

    Gottwald, D., Likos, C. N., Kahl, G. & Löwen, H. Phase behavior of ionic microgels. Phys. Rev. Lett. 92, 068301 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 96.

    Scotti, A. et al. Exploring the colloid-to-polymer transition for ultra-low crosslinked microgels from three to two dimensions. Nat. Commun. 10, 1–8 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 97.

    Menut, P., Seiffert, S., Sprakel, J. & Weitz, D. A. Does size matter? elasticity of compressed suspensions of colloidal-and granular-scale microgels. Soft Matter 8, 156–164 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 98.

    Yuan, Q. et al. Synthesis of a colloidal molecule from soft microgel spheres. ACS Macro Lett. 5, 565–568 (2016).

    CAS 

    Google Scholar
     

  • 99.

    Wong, J. E., Gaharwar, A. K., Müller-Schulte, D., Bahadur, D. & Richtering, W. Dual-stimuli responsive pnipam microgel achieved via layer-by-layer assembly: magnetic and thermoresponsive. J. Colloid Interface Sci. 324, 47–54 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 100.

    Witt, M. U. et al. Distribution of cofe2o4 nanoparticles inside pnipam-based microgels of different cross-linker distributions. J. Phys. Chem. B 123, 2405–2413 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 101.

    Xu, W. et al. Synthesis of polyampholyte janus-like microgels by coacervation of reactive precursors in precipitation polymerization. Angew. Chem. Int. Ed. 59, 1248–1255 (2020).

    CAS 

    Google Scholar
     

  • 102.

    Raab, M. et al. Using dna origami nanorulers as traceable distance measurement standards and nanoscopic benchmark structures. Sci. Rep. 8, 1–11 (2018).

    CAS 

    Google Scholar
     

  • 103.

    Alvarez, L. H. et al. Deformation of microgels at solid-liquid interfaces visualized in three-dimension. Nano Lett. 19, 8862–8867 (2019).

    ADS 

    Google Scholar
     

  • 104.

    Bonnecaze, R. T. & Cloitre, M. Micromechanics of soft particle glasses. In (Ed. M. Cloitre) High Solid Dispersions 117–161 (Springer, 2010).

  • 105.

    Huang, F. et al. Pair potential of charged colloidal stars. Phys. Rev. Lett. 102, 108302 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 106.

    Yunker, P. J. et al. Physics in ordered and disordered colloidal matter composed of poly (n-isopropylacrylamide) microgel particles. Rep. Prog. Phys. 77, 056601 (2014).

    ADS 
    PubMed 

    Google Scholar
     

  • 107.

    Pellet, C. & Cloitre, M. The glass and jamming transitions of soft polyelectrolyte microgel suspensions. Soft Matter 12, 3710–3720 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 108.

    Ikeda, A., Berthier, L. & Sollich, P. Disentangling glass and jamming physics in the rheology of soft materials. Soft Matter 9, 7669–7683 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • 109.

    Senff, H. & Richtering, W. Temperature sensitive microgel suspensions: colloidal phase behavior and rheology of soft spheres. J. Chem. Phys. 111, 1705–1711 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • 110.

    Conley, G. M., Aebischer, P., Nöjd, S., Schurtenberger, P. & Scheffold, F. Jamming and overpacking fuzzy microgels: deformation, interpenetration, and compression. Sci. Adv. 3, e1700969 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 111.

    De Aguiar, I. B. et al. Deswelling and deformation of microgels in concentrated packings. Sci. Rep. 7, 10223 (2017).


    Google Scholar
     

  • 112.

    Jorjadze, I., Pontani, L.-L. & Brujic, J. Microscopic approach to the nonlinear elasticity of compressed emulsions. Phys. Rev. Lett. 110, 048302 (2013).

    ADS 
    PubMed 

    Google Scholar
     

  • 113.

    Zhu, L., Zhang, W., Elnatan, D. & Huang, B. Faster storm using compressed sensing. Nat. Methods 9, 721 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 114.

    Scotti, A. et al. The role of ions in the self-healing behavior of soft particle suspensions. Proc. Natl Acad. Sci. USA 113, 5576–5581 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 115.

    Gasser, U., Scotti, A. & Fernandez-Nieves, A. Spontaneous deswelling of microgels controlled by counterion clouds. Phys. Rev. E 99, 042602 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 116.

    Scotti, A. et al. Deswelling of microgels in crowded suspensions depends on cross-link density and architecture. Macromolecules 52, 3995–4007 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 117.

    Mohanty, P. S., Paloli, D., Crassous, J. J., Zaccarelli, E. & Schurtenberger, P. Effective interactions between soft-repulsive colloids: experiments, theory, and simulations. J. Chem. Phys. 140, 094901 (2014).

    ADS 
    PubMed 

    Google Scholar
     

  • 118.

    Seth, J. R., Mohan, L., Locatelli-Champagne, C., Cloitre, M. & Bonnecaze, R. T. A micromechanical model to predict the flow of soft particle glasses. Nat. Mater. 10, 838–843 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 119.

    Nakaishi, A. et al. Elastic and flow properties of densely packed binary microgel mixtures with size and stiffness disparities. Macromolecules 51, 9901–9914 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 120.

    Thorne, J. B., Vine, G. J. & Snowden, M. J. Microgel applications and commercial considerations. Colloid Polym. Sci. 289, 625 (2011).

    CAS 

    Google Scholar
     

  • 121.

    Vlassopoulos, D. & Cloitre, M. Tunable rheology of dense soft deformable colloids. Curr. Opin. Colloid Interface Sci. 19, 561–574 (2014).

    CAS 

    Google Scholar
     

  • 122.

    Mattsson, J. et al. Soft colloids make strong glasses. Nature 462, 83 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 123.

    Wang, M., Doi, T. & McClements, D. J. Encapsulation and controlled release of hydrophobic flavors using biopolymer-based microgel delivery systems: sustained release of garlic flavor during simulated cooking. Food Res. Int. 119, 6–14 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 124.

    Keidel, R. et al. Time-resolved structural evolution during the collapse of responsive hydrogels: the microgel-to-particle transition. Sci. Adv. 4, eaao7086 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 125.

    Sierra-Martin, B., Retama, J. R., Laurenti, M., Barbero, A. F. & Cabarcos, E. L. Structure and polymer dynamics within pnipam-based microgel particles. Adv. Colloid Interface Sci. 205, 113–123 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 126.

    Scherzinger, C., Holderer, O., Richter, D. & Richtering, W. Polymer dynamics in responsive microgels: influence of cononsolvency and microgel architecture. Phys. Chem. Chem. Phys. 14, 2762–2768 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 127.

    Dagallier, C., Dietsch, H., Schurtenberger, P. & Scheffold, F. Thermoresponsive hybrid microgel particles with intrinsic optical and magnetic anisotropy. Soft Matter 6, 2174–2177 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 128.

    Wright, D. S., Flavel, B. S. & Quinton, J. S. Streaming zeta potential measurements of surface-bound organosilane molecular species. In Proceedings of the 2006 International Conference on Nanoscience and Nanotechnology 634–636 (IEEE, 2006).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *