Pathways for advancing pesticide policies


  • 1.

    Savary, S. et al. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 3, 430–439 (2019).

    PubMed 

    Google Scholar
     

  • 2.

    Larsen, A. E., Gaines, S. D. & Deschênes, O. Agricultural pesticide use and adverse birth outcomes in the San Joaquin Valley of California. Nat. Commun. 8, 302 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Niggli, U. et al. Pflanzenschutz und Biodiversität in Agrarökosystemen (Wissenschaftlicher Beirats des Nationalen Aktionsplans Pflanzenschutz beim Bundesministerium für Ernährung und Landwirtschaft, 2019).

  • 4.

    Stehle, S. & Schulz, R. Agricultural insecticides threaten surface waters at the global scale. Proc. Natl Acad. Sci. USA 112, 5750–5755 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Lai, W. Pesticide use and health outcomes: Evidence from agricultural water pollution in China. J. Environ. Econ. Manag. 86, 93–120 (2017).


    Google Scholar
     

  • 6.

    Lefebvre, M., Langrell, S. R. H. & Gomez-y-Paloma, S. Incentives and policies for integrated pest management in Europe: a review. Agron. Sustain. Dev. 35, 27–45 (2014).


    Google Scholar
     

  • 7.

    Osteen, C. D. & Fernandez-Cornejo, J. Economic and policy issues of U.S. agricultural pesticide use trends. Pest Manag. Sci. 69, 1001–1025 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Swinnen, J. Economics and politics of food standards, trade, and development. Agric. Econ. 47, 7–19 (2016).


    Google Scholar
     

  • 9.

    Nimenya, N., Ndimira, P. F. & de Frahan, B. H. Tariff equivalents of nontariff measures: The case of European horticultural and fish imports from African countries. Agric. Econ. 43, 635–653 (2012).


    Google Scholar
     

  • 10.

    Handford, C. E., Elliott, C. T. & Campbell, K. A review of the global pesticide legislation and the scale of challenge in reaching the global harmonization of food safety standards. Integr. Environ. Assess. Manag. 11, 525–536 (2015).

    PubMed 

    Google Scholar
     

  • 11.

    Topping, C., Aldrich, A. & Berny, P. Overhaul environmental risk assessment for pesticides. Science 367, 360–363 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Kudsk, P. & Mathiassen, S. K. Pesticide regulation in the European Union and the glyphosate controversy. Weed Sci. 68, 214–222 (2020).


    Google Scholar
     

  • 13.

    Special Report 05/2020: Sustainable Use of Plant Protection Products: Limited Progress in Measuring and Reducing Risks (European Court of Auditors, 2020).

  • 14.

    Pesticide Sales (European Environmental Agency, 2019); https://go.nature.com/31pffJF

  • 15.

    Hossard, L., Guichard, L., Pelosi, C. & Makowski, D. Lack of evidence for a decrease in synthetic pesticide use on the main arable crops in France. Sci. Total Environ. 575, 152–161 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Spycher, S. et al. Pesticide risks in small streams—how to get as close as possible to the stress imposed on aquatic organisms. Environ. Sci. Technol. 52, 4526–4535 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Special Eurobarometer 440: Europeans, Agriculture and the CAP (European Commission, 2016).

  • 18.

    Huber, R. & Finger, R. Popular initiatives increasingly stimulate agricultural policy in Switzerland. EuroChoices 18, 38–39 (2019).


    Google Scholar
     

  • 19.

    Maxwell, S. L. et al. Being smart about SMART environmental targets. Science 347, 1075–1076 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    DG Health and Food Safety Overview Report: Sustainable Use of Pesticides (European Union, 2017).

  • 21.

    Möhring, N., Gaba, S. & Finger, R. Quantity based indicators fail to identify extreme pesticide risks. Sci. Total Environ. 646, 503–523 (2019).

    ADS 
    PubMed 

    Google Scholar
     

  • 22.

    Saini, R. K., Bagri, L. P. & Bajpai, A. K. in New Pesticides and Soil Sensors 519–559 (Elsevier, 2017).

  • 23.

    Rösch, A., Beck, B., Hollender, J. & Singer, H. Picogram per liter quantification of pyrethroid and organophosphate insecticides in surface waters: a result of large enrichment with liquid–liquid extraction and gas chromatography coupled to mass spectrometry using atmospheric pressure chemical ionization. Anal. Bioanal. Chem. 411, 3151–3164 (2019).

    PubMed 

    Google Scholar
     

  • 24.

    Kudsk, P., Jørgensen, L. N. & Ørum, J. E. Pesticide load—A new Danish pesticide risk indicator with multiple applications. Land Use Policy 70, 384–393 (2018).


    Google Scholar
     

  • 25.

    Butler, D. EU expected to vote on pesticide ban after major scientific review. Nature 555, 150–151 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Böcker, T., Möhring, N. & Finger, R. Herbicide free agriculture? A bio-economic modelling application to Swiss wheat production. Agric. Syst. 173, 378–392 (2019).


    Google Scholar
     

  • 27.

    Möhring, N., Dalhaus, T., Enjolras, G. & Finger, R. Crop insurance and pesticide use in European agriculture. Agric. Syst. 184, 102902 (2020).


    Google Scholar
     

  • 28.

    Pe’er, G. et al. A greener path for the EU Common Agricultural Policy. Science 365, 449–451 (2019).

    ADS 
    PubMed 

    Google Scholar
     

  • 29.

    Pretty, J. Intensification for redesigned and sustainable agricultural systems. Science 362, eaav0294 (2018).

    ADS 
    PubMed 

    Google Scholar
     

  • 30.

    Schomers, S. & Matzdorf, B. Payments for ecosystem services: A review and comparison of developing and industrialized countries. Ecosyst. Serv. 6, 16–30 (2013).


    Google Scholar
     

  • 31.

    Finger, R. Take a holistic view when making pesticide policies stricter. Nature 556, 174–174 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Waterfield, G. & Zilberman, D. Pest management in food systems: An economic perspective. Annu. Rev. Env. Resour. 37, 223–245 (2012).


    Google Scholar
     

  • 33.

    Horowitz, J. K. & Lichtenberg, E. Risk-reducing and risk-increasing effects of pesticides. J. Agric. Econ. 45, 82–89 (1994).


    Google Scholar
     

  • 34.

    Möhring, N., Bozzola, M., Hirsch, S. & Finger, R. Are pesticides risk decreasing? The relevance of pesticide indicator choice in empirical analysis. Agric. Econ. 51, 429–444 (2020).


    Google Scholar
     

  • 35.

    Dessart, F. J., Barreiro-Hurlé, J. & van Bavel, R. Behavioural factors affecting the adoption of sustainable farming practices: a policy-oriented review. Eur. Rev. Agric. Econ. 46, 417–471 (2019).


    Google Scholar
     

  • 36.

    Perry, E. D., Hennessy, D. A. & Moschini, G. Product concentration and usage: Behavioral effects in the glyphosate market. J. Econ. Behav. Organ. 158, 543–559 (2019).


    Google Scholar
     

  • 37.

    Iyer, P., Bozzola, M., Hirsch, S., Meraner, M. & Finger, R. Measuring farmer risk preferences in Europe: A systematic review. J. Agric. Econ. 71, 3–26 (2019).


    Google Scholar
     

  • 38.

    Möhring, N., Wuepper, D., Musa, T. & Finger, R. Why farmers deviate from recommended pesticide timing: The role of uncertainty and information. Pest Manag. Sci. 76, 2787–2798 (2020).

    PubMed 

    Google Scholar
     

  • 39.

    Finger, R., Möhring, N., Dalhaus, T. & Böcker, T. Revisiting pesticide taxation schemes. Ecol. Econ. 134, 263–266 (2017).


    Google Scholar
     

  • 40.

    Siegrist, M. & Bearth, A. Chemophobia in Europe and reasons for biased risk perceptions. Nat. Chem. 11, 1071–1072 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Saleh, R., Bearth, A. & Siegrist, M. “Chemophobia” today: Consumers’ knowledge and perceptions of chemicals. Risk Anal. 39, 2668–2682 (2019).

    PubMed 

    Google Scholar
     

  • 42.

    Bearth, A., Saleh, R. & Siegrist, M. Lay-people’s knowledge about toxicology and its principles in eight European countries. Food Chem. Toxicol. 131, 110560 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Kraus, N., Malmfors, T. & Slovic, P. Intuitive toxicology: Expert and lay judgments of chemical risks. Risk Anal. 12, 215–232 (1992).


    Google Scholar
     

  • 44.

    Bazoche, P. et al. Willingness to pay for pesticide reduction in the EU: nothing but organic? Eur. Rev. Agric. Econ. 41, 87–109 (2013).


    Google Scholar
     

  • 45.

    Hartmann, C., Hieke, S., Taper, C. & Siegrist, M. European consumer healthiness evaluation of ‘Free-from’ labelled food products. Food Qual. Prefer. 68, 377–388 (2018).


    Google Scholar
     

  • 46.

    List of Candidates for Substitution (European Commission, 2015); https://ec.europa.eu/food/plant/pesticides/approval_active_substances_en.

  • 47.

    Kraehmer, H. et al. Herbicides as weed control agents: State of the art: II. Recent achievements. Plant Physiol. 166, 1132–1148 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Storck, V., Karpouzas, D. G. & Martin-Laurent, F. Towards a better pesticide policy for the European Union. Sci. Total Environ. 575, 1027–1033 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 49.

    Milner, A. M. & Boyd, I. L. Toward pesticidovigilance. Science 357, 1232–1234 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Rosenbom, A. E. et al. The Danish Pesticide Leaching Assessment Programme: Monitoring results May 1999–June 2009 (Geological Survey of Denmark and Greenland, 2010).

  • 51.

    Décret no 2016–1595 (La République Français, 2016); https://www.legifrance.gouv.fr/eli/decret/2016/11/24/AGRG1517899D/jo/texte.

  • 52.

    Muller, A. et al. Strategies for feeding the world more sustainably with organic agriculture. Nat. Commun. 8, 1290 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Tschumi, M., Albrecht, M., Entling, M. H. & Jacot, K. High effectiveness of tailored flower strips in reducing pests and crop plant damage. Proc. Roy. Soc. B: Biol. Sci. 282, 20151369 (2015).


    Google Scholar
     

  • 54.

    Lechenet, M., Dessaint, F., Py, G., Makowski, D. & Munier-Jolain, N. Reducing pesticide use while preserving crop productivity and profitability on arable farms. Nat. Plants 3, 17008 (2017).

    PubMed 

    Google Scholar
     

  • 55.

    Hickey, L. T. et al. Breeding crops to feed 10 billion. Nat. Biotechnol. 37, 744–754 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 56.

    Chakraborty, S. & Newton, A. C. Climate change, plant diseases and food security: an overview. Plant Pathol. 60, 2–14 (2011).


    Google Scholar
     

  • 57.

    Deutsch, C. A. et al. Increase in crop losses to insect pests in a warming climate. Science 361, 916–919 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    Chen, K., Wang, Y., Zhang, R., Zhang, H. & Gao, C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 70, 667–697 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 59.

    Zsögön, A. et al. De novo domestication of wild tomato using genome editing. Nat. Biotechnol. 36, 1211–1216 (2018).


    Google Scholar
     

  • 60.

    Oliva, R. et al. Broad-spectrum resistance to bacterial blight in rice using genome editing. Nat. Biotechnol. 37, 1344–1350 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 61.

    Metz, F. & Ingold, K. Politics of the precautionary principle: assessing actors’ preferences in water protection policy. Policy Sci. 50, 721–743 (2017).


    Google Scholar
     

  • 62.

    Ramessar, K., Capell, T., Twyman, R. M. & Christou, P. Going to ridiculous lengths—European coexistence regulations for GM crops. Nature Biotechnol. 28, 133–136 (2010).

    CAS 

    Google Scholar
     

  • 63.

    Qaim, M. The economics of genetically modified crops. Annu. Rev. Resour. Econ. 1, 665–694 (2009).


    Google Scholar
     

  • 64.

    Smyth, S. J. The human health benefits from GM crops. Plant Biotechnol. J. 18, 887–888 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 65.

    Mascher, M. et al. Genebank genomics bridges the gap between the conservation of crop diversity and plant breeding. Nat. Genet. 51, 1076–1081 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 66.

    Towards a Scientifically Justified, Differentiated Regulation of Genome Edited Plants in the EU (Nationale Akademie der Wissenschaften Leopoldina, 2019).

  • 67.

    Ledford, H. CRISPR conundrum: Strict European court ruling leaves food-testing labs without a plan. Nature 572, 15 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 68.

    Walter, A., Finger, R., Huber, R. & Buchmann, N. Opinion: Smart farming is key to developing sustainable agriculture. Proc. Natl Acad. Sci. USA 114, 6148–6150 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 69.

    Mahlein, A. K., Kuska, M. T., Behmann, J., Polder, G. & Walter, A. Hyperspectral sensors and imaging technologies in phytopathology: State of the art. Annu. Rev. Phytopathol. 56, 535–558 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 70.

    Finger, R., Swinton, S. M., El Benni, N. & Walter, A. Precision farming at the nexus of agricultural production and the environment. Annu. Rev. Resour. Econ. 11, 313–335 (2019).


    Google Scholar
     

  • 71.

    Metz, F. & Ingold, K. Sustainable wastewater management: Is it possible to regulate micropollution in the future by learning from the past? A policy analysis. Sustainability 6, 1992–2012 (2014).


    Google Scholar
     

  • 72.

    Schaffrin, A., Sewerin, S. & Seubert, S. Toward a comparative measure of climate policy output. Policy Stud. J. 43, 257–282 (2015).


    Google Scholar
     

  • 73.

    Peters, B. G. & Hoornbeek, J. A. in Designing Government: From Instruments to Governance (eds Eliadis, P. et al.) 77–105 (McGill-Queen’s University Press, 2005).

  • 74.

    Ingold, K., Driessen, P. P. J., Runhaar, H. A. C. & Widmer, A. On the necessity of connectivity: linking key characteristics of environmental problems with governance modes. J. Environ. Plan. Manag. 62, 1821–1844 (2018).


    Google Scholar
     

  • 75.

    Early, R. et al. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun. 7, 12485 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 76.

    Haasnoot, M., Kwakkel, J. H., Walker, W. E. & ter Maat, J. Dynamic adaptive policy pathways: A method for crafting robust decisions for a deeply uncertain world. Glob. Environ. Change 23, 485–498 (2013).


    Google Scholar
     

  • 77.

    De Schutter, O., Jacobs, N. & Clément, C. A ‘Common Food Policy’ for Europe: How governance reforms can spark a shift to healthy diets and sustainable food systems. Food Policy https://doi.org/10.1016/j.foodpol.2020.101849 (2020).

  • 78.

    Lee, R., den Uyl, R. & Runhaar, H. Assessment of policy instruments for pesticide use reduction in Europe; Learning from a systematic literature review. Crop Prot. 126, 104929 (2019).


    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *