Perceptual correlates of successful body–prosthesis interaction in lower limb amputees: psychometric characterisation and development of the Prosthesis Embodiment Scale


  • 1.

    Murray, C. D. Embodiment and prosthetics. In Psychoprosthetics (eds Gallagher, P. et al.) 119–129 (Springer, Berlin, 2008).


    Google Scholar
     

  • 2.

    Biddiss, E. & Chau, T. Upper-limb prosthetics: critical factors in device abandonment. Am. J. Phys. Med. Rehabil. 86, 977–987 (2007).

    PubMed 

    Google Scholar
     

  • 3.

    Murray, C. D. & Fox, J. Body image and prosthesis satisfaction in the lower limb amputee. Disabil. Rehabil. 24, 925–931 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    McDonnell, P. M., Scott, R. N., Dickison, J., Theriault, R. A. & Wood, B. Do artificial limbs become part of the user? New evidence. J. Rehabil. Res. Dev. 26, 17–24 (1989).

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Canzoneri, E., Marzolla, M., Amoresano, A., Verni, G. & Serino, A. Amputation and prosthesis implantation shape body and peripersonal space representations. Sci. Rep. 3, 2844. https://doi.org/10.1038/srep02844 (2013).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Murray, C. D. An interpretative phenomenological analysis of the embodiment of artificial limbs. Disabil. Rehabil. 26, 963–973 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Niedernhuber, M., Barone, D. G. & Lenggenhager, B. Prostheses as extensions of the body: progress and challenges. Neurosci. Biobehav. Rev. 92, 1–6 (2018).

    PubMed 

    Google Scholar
     

  • 8.

    MacLachlan, M. Embodiment: Clinical, Critical and Cultural Perspectives on Health and Illness (Open University Press, London, 2004).


    Google Scholar
     

  • 9.

    De Pino, G. et al. Sensory- and action-oriented embodiment of neurally-interfaced robotic hand prostheses. Front. Neurosci. 14, 389 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Botvinick, M. & Cohen, J. Rubber hands ‘feel’ touch that eyes see. Nature 391, 756 (1998).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Crea, S., D’Alonzo, M., Vitiello, N. & Cipriani, C. The rubber foot illusion. J. Neuroeng. Rehabil. 12, 77. https://doi.org/10.1186/s12984-015-0069-6 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Ehrsson, H. H., Spence, C. & Passingham, R. E. That’s my hand! Activity in premotor cortex reflects feeling of ownership of a limb. Science 305, 875–877 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Ehrsson, H. H., Holmes, N. P. & Passingham, R. E. Touching a rubber hand: feeling of body ownership is associated with activity in multisensory brain areas. J. Neurosci. 25, 10564–10573 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Sanchez-Vives, M. V., Spanlang, B., Frisoli, A., Bergamasco, M. & Slater, M. Virtual hand illusion induced by visuomotor correlations. PLoS ONE 29, 10381. https://doi.org/10.1371/journal.pone.0010381 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Kalckert, A. & Ehrsson, H. H. Moving a rubber hand that feels like your own: a dissociation of ownership and agency. Front. Hum. Neurosci. 6, 40. https://doi.org/10.3389/fnhum.2012.00040 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Huynh, T. V., Bekrater-Bodmann, R., Fröhner, J., Vogt, J. & Beckerle, P. Robotic hand illusion with tactile feedback: unravelling the relative contribution of visuotactile and visuomotor input to the representation of body parts in space. PLoS ONE 14, e0210058. https://doi.org/10.1371/journal.pone.0210058 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Riemer, M., Trojan, J., Beauchamp, M. & Fuchs, X. The rubber hand universe: on the impact of methodological differences in the rubber hand illusion. Neurosci. Biobehav. Rev. 104, 268–280 (2019).

    PubMed 

    Google Scholar
     

  • 18.

    Longo, M. R., Schüür, F., Kammers, M. P. M., Tsakiris, M. & Haggard, P. What is embodiment? A psychometric approach. Cognition 107, 978–998 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Armel, K. C. & Ramachandran, V. S. Projecting sensations to external objects: evidence from skin conductance response. Proc. Biol. Sci. 270, 1499–1506 (2003).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Moseley, G. L. et al. Psychologically induced cooling of a specific body part caused by the illusory ownership of an artificial counterpart. Proc. Natl. Acad. Sci. U.S.A. 105, 13169–13173 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Ehrsson, H. H. Multisensory processes in body ownership. In Multisensory Perception (eds Sathian, K. & Ramachandran, V. S.) 179–200 (Academic Press, London, 2020).


    Google Scholar
     

  • 22.

    De Vignemont, F. & Alsmith, A. J. T. The Subject’s Matter: Self-Consciousness and the Body (MIT Press, Cambridge, 2017).


    Google Scholar
     

  • 23.

    Wada, M., Takano, K., Ora, H., Ide, M. & Kansaku, K. The rubber tail illusion as evidence of body ownership in mice. J. Neurosci. 36, 11133–11137 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Gallagher, S. Philosophical conceptions of the self: implications for cognitive science. Trends Cogn. Sci. 4, 14–21 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Legrand, D. The bodily self: the sensori-motor roots of pre-reflective self-consciousness. Phenom. Cogn. Sci. 5, 89–118 (2006).


    Google Scholar
     

  • 26.

    Blanke, O. Multisensory brain mechanisms of bodily self-consciousness. Nat. Rev. Neurosci. 13, 556–571 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Makin, T. R., de Vignemont, F. & Faisal, A. A. Neurocognitive barriers to the embodiment of technology. Nat. Biomed. Eng. 1, 1–3 (2017).


    Google Scholar
     

  • 28.

    Ehrsson, H. H. et al. Upper limb amputees can be induced to experience a rubber hand as their own. Brain 131, 3443–3452 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Giummarra, M. J., Gibson, S. J., Georgiou-Karistianis, N. & Bradshaw, J. L. Mechanisms underlying embodiment, disembodiment and loss of embodiment. Neurosci. Biobehav. Rev. 32, 143–160 (2008).

    PubMed 

    Google Scholar
     

  • 30.

    Wijk, U. & Carlsson, I. Forearm amputees’ views of prosthesis use and sensory feedback. J. Hand Ther. 28, 269–277 (2015).

    PubMed 

    Google Scholar
     

  • 31.

    Giummarra, M. J. et al. Corporeal awareness and proprioceptive sense of the phantom. Br. J. Psychol. 101, 791–808 (2010).

    PubMed 

    Google Scholar
     

  • 32.

    Gouzien, A. et al. Reachability and the sense of embodiment in amputees using prostheses. Sci. Rep. 7, 4999. https://doi.org/10.1038/s41598-017-05094-6 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Döring, N. & Bortz, J. Forschungsmethoden und Evaluation für Human- und Sozialwissenschaftler (Springer, Berlin, 2006).


    Google Scholar
     

  • 34.

    Davies, A. M. & White, R. C. A sensational illusion: vision-touch synaesthesia and the rubber hand paradigm. Cortex 49, 806–818 (2013).


    Google Scholar
     

  • 35.

    Field, A. Discovering Statistics Using IBM SPSS Statistics (SAGE Publications, Thousand Oaks, 2009).


    Google Scholar
     

  • 36.

    MacCallum, R. C., Widaman, K. F., Zhang, S. & Hong, S. Sample size in factor analysis. Psychol. Methods 4, 84–99 (1999).


    Google Scholar
     

  • 37.

    George, D. & Mallery, P. IBM SPSS Statistics 19 Step by Step: A Simple Guide and Reference (Pearson, London, 2012).


    Google Scholar
     

  • 38.

    Imaizumi, S., Asai, T. & Koyama, S. Embodied prosthetic arm stabilizes body posture, while unembodied one perturbs it. Conscious. Cogn. 45, 75–88 (2016).

    PubMed 

    Google Scholar
     

  • 39.

    De Vignemont, F. Embodiment, ownership and disownership. Conscious. Cogn. 20, 82–93 (2011).

    PubMed 

    Google Scholar
     

  • 40.

    Apps, M. A. & Tsakiris, M. The free-energy self: a predictive coding account of self-recognition. Neurosci. Biobehav. Rev. 41, 85–97 (2014).

    PubMed 

    Google Scholar
     

  • 41.

    Goldberg, L. R. Doing it all bass-ackwards: the development of hierarchical factor structures from the top down. J. Res. Personal. 40, 347–358 (2006).


    Google Scholar
     

  • 42.

    De Preester, H. & Tsakiris, M. Body-extension versus body-incorporation: is there a need for a body-model?. Phenom. Cogn. Sci. 8, 307–319 (2009).


    Google Scholar
     

  • 43.

    Bekrater-Bodmann, R., Foell, J. & Flor, H. Relationship between bodily illusions and pain syndromes. Pain Manag. 1, 217–228 (2011).

    PubMed 

    Google Scholar
     

  • 44.

    Berti, A. & Frassinetti, F. When far becomes near: remapping of space by tool use. J. Cogn. Neurosci. 12, 415–420 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Cardinali, L. et al. Tool-use induces morphological updating of the body schema. Curr. Biol. 19, R478-479 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Holmes, N. P. Does tool use extend peripersonal space? A review and re-analysis. Exp. Brain Res. 218, 273–282 (2012).

    PubMed 

    Google Scholar
     

  • 47.

    Botvinick, M. Neuroscience. Probing the neural basis of body ownership. Science 305, 782–783 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    De Preester, H. Technology and the body: the (im)possibilities of re-embodiment. Found. Sci. 16, 119–137 (2011).


    Google Scholar
     

  • 49.

    van den Heiligenberg, F. M. Z. et al. Artificial limb representation in amputees. Brain 141, 1422–1433 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Preißler, S. et al. Plasticity in the visual system is associated with prosthesis use in phantom limb pain. Front. Hum. Neurosci. 7, 311. https://doi.org/10.3389/fnhum.2013.00311 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Schmalzl, L., Kalckert, A., Ragnö, C. & Ehrsson, H. H. Neural correlates of the rubber hand illusion in amputees: a report of two cases. Neurocase 20, 407–420 (2014).

    PubMed 

    Google Scholar
     

  • 52.

    Bekrater-Bodmann, R., Foell, J., Diers, M. & Flor, H. The perceptual and neuronal stability of the rubber hand illusion across contexts and over time. Brain Res. 1452, 130–139 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    D’Alonzo, M., Clemente, F. & Cipriani, C. Vibrotactile stimulation promotes embodiment of an alien hand in amputees with phantom sensations. IEEE Trans. Neural Syst. Rehabil. Eng. 23, 450–457 (2015).

    PubMed 

    Google Scholar
     

  • 54.

    Page, D. M. et al. Motor control and sensory feedback enhance prosthesis embodiment and reduce phantom pain after long-term hand amputation. Front. Hum. Neurosci. 12, 352. https://doi.org/10.3389/fnhum.2018.00352 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Petrini, F. M. et al. Enhancing functional abilities and cognitive integration of the lower limb prosthesis. Sci. Transl. Med. 11, 512. https://doi.org/10.1126/scitranslmed.aav8939 (2019).

    Article 

    Google Scholar
     

  • 56.

    Rognini, G. et al. Multisensory bionic limb to achieve prosthesis embodiment and reduce distorted phantom limb perceptions. J. Neurol. Neurosurg. Psychiatry 90, 833–836 (2019).

    PubMed 

    Google Scholar
     

  • 57.

    Schiefer, M., Tan, D., Sidek, S. M. & Tyler, D. J. Sensory feedback by peripheral nerve stimulation improves task performance in individuals with upper limb loss using a myoelectric prosthesis. J. Neural Eng. 13, 016001 (2016).

    ADS 
    PubMed 

    Google Scholar
     

  • 58.

    Schönbrodt, F. D. & Perugini, M. At what sample size do correlations stabilize?. J. Res. Personal. 47, 609–612 (2013).


    Google Scholar
     

  • 59.

    Campbell, D. T. & Fiske, D. W. Convergent and discriminant validation by the multitrait-multimethod matrix. Psychol. Bull. 56, 81–105 (1959).

    CAS 
    PubMed 

    Google Scholar
     

  • 60.

    Moxey, P. W. et al. Epidemiological study of lower limb amputation in England between 2003 and 2008. Br. J. Surg. 97, 1348–1353 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 61.

    Bekrater-Bodmann, R. et al. Post-amputation pain is associated with the recall of an impaired body representation in dreams-results from a nation-wide survey on limb amputees. PLoS ONE 10, e0119552. https://doi.org/10.1371/journal.pone.0119552 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Beckerle, P., Willwacher, S., Liarokapis, M., Bowers, M. P. & Popovic, M. B. Prosthetic limbs. In Biomechatronics (ed. Popovic, M. B.) 235–278 (Academic Press, London, 2019).


    Google Scholar
     

  • 63.

    Hunter, J. P., Katz, J. & Davis, K. D. The effect of tactile and visual sensory inputs on phantom limb awareness. Brain 126, 579–589 (2003).

    PubMed 

    Google Scholar
     

  • 64.

    Hunter, J. P., Katz, J. & Davis, K. D. Stability of phantom limb phenomena after upper limb amputation: a longitudinal study. Neuroscience 156, 939–949 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 65.

    Lloyd, D. M. Spatial limits on referred touch to an alien limb may reflect boundaries of visuo-tactile peripersonal space surrounding the hand. Brain Cogn. 64, 104–109 (2007).

    PubMed 

    Google Scholar
     

  • 66.

    Ide, M. The effect of ‘anatomical plausibility’ of hand angle on the rubber-hand illusion. Perception 42, 103–111 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 67.

    Costantini, M. & Haggard, P. The rubber hand illusion: sensitivity and reference frame for body ownership. Conscious. Cogn. 16, 229–240 (2007).

    PubMed 

    Google Scholar
     

  • 68.

    Ramachandran, V. S. & Rogers-Ramachandran, D. Synaesthesia in phantom limbs induced with mirrors. Proc. Biol. Sci. 263, 377–386 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • 69.

    Ramachandran, V. S. & Brang, D. Sensations evoked in patients with amputation from watching an individual whose corresponding intact limb is being touched. Arch. Neurol. 66, 1281–1284 (2009).

    PubMed 

    Google Scholar
     

  • 70.

    Diers, M. et al. Illusion-related brain activations: a new virtual reality mirror box system for use during functional magnetic resonance imaging. Brain Res. 1594, 173–182 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 71.

    Foell, J., Bekrater-Bodmann, R., Diers, M. & Flor, H. Mirror therapy for phantom limb pain: brain changes and the role of body representation. Eur. J. Pain 18, 729–739 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 72.

    Thurstone, L. L. Multiple Factor Analysis (University of Chicago Press, Chicago, 1947).


    Google Scholar
     

  • 73.

    Leech, N. L., Barrett, K. C. & Morgan, G. A. IBM SPSS for Intermediate Statistics: Use and Interpretation (Routledge, London, 2014).


    Google Scholar
     

  • 74.

    Kasper, D. & Unlü, A. On the relevance of assumptions associated with classical factor analytic approaches. Front. Psychol. 4, 109. https://doi.org/10.3389/fpsyg.2013.00109 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 75.

    O’Connor, B. P. SPSS and SAS programs for determining the number of components using parallel analysis and velicer’s MAP test. Behav. Res. Methods Instrum. Comput. 32, 396–402 (2000).

    PubMed 

    Google Scholar
     

  • 76.

    Stevens, J. P. Applied Multivariate Statistics for the Social Sciences (Routledge, London, 2009).


    Google Scholar
     

  • 77.

    Sheng, Y. & Sheng, Z. Is coefficient alpha robust to non-normal data?. Front. Psychol. 3, 34. https://doi.org/10.3389/fpsyg.2012.00034 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 78.

    Rousson, V., Gasser, T. & Seifert, B. Assessing intrarater, interrater and test–retest reliability of continuous measurements. Stat. Med. 21, 3431–3446 (2002).

    PubMed 

    Google Scholar
     

  • 79.

    Nunnally, J. C. Psychometric Theory (McGraw-Hill, New York, 1978).


    Google Scholar
     

  • 80.

    Snedecor, G. W. & Cochran, W. G. Statistical Methods (Iowa State University Press, Iowa City, 1980).


    Google Scholar
     

  • 81.

    Gallagher, P., Franchignoni, F., Giordano, A. & MacLachlan, M. Trinity amputation and prosthesis experience scales: a psychometric assessment using classical test theory and Rasch analysis. Am. J. Phys. Med. Rehabil. 89, 487–496 (2010).

    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *