Plasmonic enhancement of stability and brightness in organic light-emitting devices


  • 1.

    Maier, S. A. Plasmonics: Fundamentals and Applications (Springer, 2007).

  • 2.

    Commercializing plasmonics. Nat. Photon. 9, 477–477 (2015).

  • 3.

    Boltasseva, A. & Atwater, H. A. Low-loss plasmonic metamaterials. Science 331, 290–291 (2011).

    PubMed 

    Google Scholar
     

  • 4.

    Tang, C. W. & VanSlyke, S. A. Organic electroluminescent diodes. Appl. Phys. Lett. 51, 913–915 (1987).


    Google Scholar
     

  • 5.

    Burroughes, J. H. et al. Light-emitting diodes based on conjugated polymers. Nature 347, 539–541 (1990); correction 348, 352 (1990).


    Google Scholar
     

  • 6.

    Baldo, M. A. et al. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395, 151–154 (1998).


    Google Scholar
     

  • 7.

    Uoyama, H., Goushi, K., Shizu, K., Nomura, H. & Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234–238 (2012).

    PubMed 

    Google Scholar
     

  • 8.

    Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004).

    PubMed 

    Google Scholar
     

  • 9.

    Pfeiffer, M., Forrest, S. R., Leo, K. & Thompson, M. E. Electrophosphorescent p–i–n organic light-emitting devices for very-high-efficiency flat-panel displays. Adv. Mater. 14, 1633–1636 (2002).


    Google Scholar
     

  • 10.

    Baldo, M. A., Lamansky, S., Burrows, P. E., Thompson, M. E. & Forrest, S. R. Very high-efficiency green organic light-emitting devices based on electrophosphorescence. Appl. Phys. Lett. 75, 4–6 (1999).


    Google Scholar
     

  • 11.

    Kim, S.-Y. et al. Organic light-emitting diodes with 30% external quantum efficiency based on a horizontally oriented emitter. Adv. Funct. Mater. 23, 3896–3900 (2013).


    Google Scholar
     

  • 12.

    Kim, K.-H. et al. Phosphorescent dye-based supramolecules for high-efficiency organic light-emitting diodes. Nat. Commun. 5, 4769 (2014).

    PubMed 

    Google Scholar
     

  • 13.

    Shin, H. et al. Sky-blue phosphorescent OLEDs with 34.1% external quantum efficiency using a low refractive index electron transporting layer. Adv. Mater. 28, 4920–4925 (2016).

    PubMed 

    Google Scholar
     

  • 14.

    Helfrich, W. & Schneider, W. G. Transients of volume-controlled current and of recombination radiation in anthracene. J. Chem. Phys. 44, 2902–2909 (1966).


    Google Scholar
     

  • 15.

    Giebink, N. C. et al. Intrinsic luminance loss in phosphorescent small-molecule organic light emitting devices due to bimolecular annihilation reactions. J. Appl. Phys. 103, 044509 (2008).


    Google Scholar
     

  • 16.

    Schaer, M., Nüesch, F., Berner, D., Leo, W. & Zuppiroli, L. Water vapor and oxygen degradation mechanisms in organic light emitting diodes. Adv. Funct. Mater. 11, 116–121 (2001).


    Google Scholar
     

  • 17.

    Yamamoto, H. et al. Improved initial drop in operational lifetime of blue phosphorescent organic light emitting device fabricated under ultra high vacuum condition. Appl. Phys. Lett. 99, 033301 (2011).


    Google Scholar
     

  • 18.

    Koenderink, A. F. On the use of Purcell factors for plasmon antennas. Opt. Lett., 35, 4208–4210 (2010).

    PubMed 

    Google Scholar
     

  • 19.

    Zhang, Y., Lee, J. & Forrest, S. R. Tenfold increase in the lifetime of blue phosphorescent organic light-emitting diodes. Nat. Commun. 5, 5008 (2014).

    PubMed 

    Google Scholar
     

  • 20.

    Tsang, D. P.-K., Matsushima, T. & Adachi, C. Operational stability enhancement in organic light-emitting diodes with ultrathin Liq interlayers. Sci. Rep. 6, 22463 (2016); corrigendum 6, 26921 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Lee, J. et al. Hot excited state management for long-lived blue phosphorescent organic light-emitting diodes. Nat. Commun. 8, 15566 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Ràfols-Ribé, J. et al. High-performance organic light-emitting diodes comprising ultrastable glass layers. Sci. Adv. 4, eaar8332 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Okamoto, K. et al. Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nat. Mater. 3, 601–605 (2004).

    PubMed 

    Google Scholar
     

  • 24.

    Hobson, P. a., Wedge, S., Wasey, J. e., Sage, I. & Barnes, W. L. Surface plasmon mediated emission from organic light-emitting diodes. Adv. Mater. 14, 1393–1396 (2002).


    Google Scholar
     

  • 25.

    Cesario, J. et al. Coupling localized and extended plasmons to improve the light extraction through metal films. Opt. Express 15, 10533–10539 (2007).

    PubMed 

    Google Scholar
     

  • 26.

    Esteban, R., Teperik, T. V. & Greffet, J. J. Optical patch antennas for single photon emission using surface plasmon resonances. Phys. Rev. Lett. 104, 026802 (2010).

    PubMed 

    Google Scholar
     

  • 27.

    Belacel, C. et al. Controlling spontaneous emission with plasmonic optical patch antennas. Nano Lett. 13, 1516–1521 (2013).

    PubMed 

    Google Scholar
     

  • 28.

    Akselrod, G. M. et al. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas. Nat. Photon. 8, 835–840 (2014).


    Google Scholar
     

  • 29.

    Hoang, T. B. et al. Ultrafast spontaneous emission source using plasmonic nanoantennas. Nat. Commun. 6, 7788 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Brütting, W., Frischeisen, J., Schmidt, T. D., Scholz, B. J. & Mayr, C. Device efficiency of organic light-emitting diodes: progress by improved light outcoupling. Phys. Status Solidi 210, 44–65 (2013).


    Google Scholar
     

  • 31.

    Bogdanov, S. I. et al. Ultrabright room-temperature sub-nanosecond emission from single nitrogen-vacancy centers coupled to nanopatch antennas. Nano Lett. 18, 4837–4844 (2018).

    PubMed 

    Google Scholar
     

  • 32.

    Worthing, P. T. & Barnes, W. L. Efficient coupling of surface plasmon polaritons to radiation using a bi-grating. Appl. Phys. Lett. 79, 3035–3037 (2001).


    Google Scholar
     

  • 33.

    Ha, D.-G. et al. Dominance of exciton lifetime in the stability of phosphorescent dyes. Adv. Opt. Mater. 7, 1901048 (2019).


    Google Scholar
     

  • 34.

    Im, J. H. et al. Bulk-like Al/Ag bilayer film due to suppression of surface plasmon resonance for high transparent organic light emitting diodes. Org. Electron. 33, 116–120 (2016).


    Google Scholar
     

  • 35.

    Forrest, S. R., Bradley, D. D. C. & Thompson, M. E. Measuring the efficiency of organic light-emitting devices. Adv. Mater. 15, 1043–1048 (2003).


    Google Scholar
     

  • 36.

    Hung, L. S., Tang, C. W., Mason, M. G., Raychaudhuri, P. & Madathil, J. Application of an ultrathin LiF/Al bilayer in organic surface-emitting diodes. Appl. Phys. Lett. 78, 544–546 (2001).


    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *