Predicting the influence of particle size on the glass transition temperature and viscosity of secondary organic material


  • 1.

    Nguyen, T. K. V. et al. Trends in particle-phase liquid water during the Southern Oxidant and Aerosol Study. Atmos. Chem. Phys. 14, 10911–10930. https://doi.org/10.5194/acp-14-10911-2014 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 2.

    Shiraiwa, M., Ammann, M., Koop, T. & Pöschl, U. Gas uptake and chemical aging of semisolid organic aerosol particles. Proc. Natl. Acad. Sci. 108, 11003–11008. https://doi.org/10.1073/pnas.1103045108 (2011).

    ADS 
    Article 
    PubMed 

    Google Scholar
     

  • 3.

    Slade, J. H. & Knopf, D. A. Multiphase OH oxidation kinetics of organic aerosol: the role of particle phase state and relative humidity. Geophys. Res. Lett. 41, 5297–5306. https://doi.org/10.1002/2014GL060582 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 4.

    Gržinić, G., Bartels-Rausch, T., Berkemeier, T., Türler, A. & Ammann, M. Viscosity controls humidity dependence of ({text{ N }}_{2} {text{ O }}_5) uptake to citric acid aerosol. Atmos. Chem. Phys. 15, 13615–13625. https://doi.org/10.5194/acp-15-13615-2015 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 5.

    Shrivastava, M. et al. Global long-range transport and lung cancer risk from polycyclic aromatic hydrocarbons shielded by coatings of organic aerosol. Proc. Natl. Acad. Sci. 114, 1246–1251. https://doi.org/10.1073/pnas.1618475114 (2017).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 6.

    Vaden, T. D., Imre, D., Beránek, J., Shrivastava, M. & Zelenyuk, A. Evaporation kinetics and phase of laboratory and ambient secondary organic aerosol. Proc. Natl. Acad. Sci. 108, 2190–2195. https://doi.org/10.1073/pnas.1013391108 (2011).

    ADS 
    Article 
    PubMed 

    Google Scholar
     

  • 7.

    Zaveri, R. A. et al. Growth kinetics and size distribution dynamics of viscous secondary organic aerosol. Environ. Sci. Technol. 52, 1191–1199. https://doi.org/10.1021/acs.est.7b04623 (2018).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 8.

    Ye, Q. et al. Following particle–particle mixing in atmospheric secondary organic aerosols by using isotopically labeled terpenes. Chem 4, 318–333. https://doi.org/10.1016/j.chempr.2017.12.008 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Li, Y. & Shiraiwa, M. Timescales of secondary organic aerosols to reach equilibrium at various temperatures and relative humidities. Atmos. Chem. Phys. 19, 5959–5971. https://doi.org/10.5194/acp-19-5959-2019 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 10.

    Price, H. C. et al. Quantifying water diffusion in high-viscosity and glassy aqueous solutions using a Raman isotope tracer method. Atmos. Chem. Phys. 14, 3817–3830. https://doi.org/10.5194/acp-14-3817-2014 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 11.

    Lienhard, D. M. et al. Viscous organic aerosol particles in the upper troposphere: diffusivity-controlled water uptake and ice nucleation?. Atmos. Chem. Phys. 15, 13599–13613. https://doi.org/10.5194/acp-15-13599-2015 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 12.

    Rothfuss, N. E., Marsh, A., Rovelli, G., Petters, M. D. & Reid, J. P. Condensation kinetics of water on amorphous aerosol particles. J. Phys. Chem. Lett. 9, 3708–3713. https://doi.org/10.1021/acs.jpclett.8b01365 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 13.

    Tandon, A., Rothfuss, N. E. & Petters, M. D. The effect of hydrophobic glassy organic material on the cloud condensation nuclei activity of particles with different morphologies. Atmos. Chem. Phys. 19, 3325–3339. https://doi.org/10.5194/acp-19-3325-2019 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 14.

    Zobrist, B. et al. Ultra-slow water diffusion in aqueous sucrose glasses. Phys. Chem. Chem. Phys. 13, 3514–3526. https://doi.org/10.1039/C0CP01273D (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 15.

    Murray, B. J. et al. Heterogeneous nucleation of ice particles on glassy aerosols under cirrus conditions. Nat. Geosci. 3, 233 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 16.

    Berkemeier, T., Shiraiwa, M., Pöschl, U. & Koop, T. Competition between water uptake and ice nucleation by glassy organic aerosol particles. Atmos. Chem. Phys. 14, 12513–12531. https://doi.org/10.5194/acp-14-12513-2014 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 17.

    Ignatius, K. et al. Heterogeneous ice nucleation of viscous secondary organic aerosol produced from ozonolysis of (alpha )-pinene. Atmos. Chem. Phys. 16, 6495–6509. https://doi.org/10.5194/acp-16-6495-2016 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 18.

    Reid, J. P. et al. The viscosity of atmospherically relevant organic particles. Nat. Commun. 9, 956. https://doi.org/10.1038/s41467-018-03027-z (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Rothfuss, N. E. & Petters, M. D. Influence of functional groups on the viscosity of organic aerosol. Environ. Sci. Technol. 51, 271–279. https://doi.org/10.1021/acs.est.6b04478 (2017).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 20.

    Fulcher, G. S. Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc. 8, 339–355. https://doi.org/10.1111/j.1151-2916.1925.tb16731.x (1925).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Debenedetti, P. G. & Stillinger, F. H. Supercooled liquids and the glass transition. Nature 410, 259–267. https://doi.org/10.1038/35065704 (2001).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 22.

    Zobrist, B., Marcolli, C., Pedernera, D. A. & Koop, T. Do atmospheric aerosols form glasses?. Atmos. Chem. Phys. 8, 5221–5244. https://doi.org/10.5194/acp-8-5221-2008 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 23.

    Virtanen, A. et al. An amorphous solid state of biogenic secondary organic aerosol particles. Nature 467, 824 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 24.

    Rothfuss, N. E., Petters, S. S., Champion, W. M., Grieshop, A. P. & Petters, M. D. Characterization of a dimer preparation method for nanoscale organic aerosol. Aerosol Sci. Technol. 39, 998–1011. https://doi.org/10.1080/02786826.2019.1623379 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 25.

    Rothfuss, N. E. & Petters, M. D. Coalescence-based assessment of aerosol phase state using dimers prepared through a dual-differential mobility analyzer technique. Aerosol Sci. Technol. 50, 1294–1305. https://doi.org/10.1080/02786826.2016.1221050 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 26.

    Renbaum-Wolff, L., Grayson, J. W. & Bertram, A. K. Technical Note: New methodology for measuring viscosities in small volumes characteristic of environmental chamber particle samples. Atmos. Chem. Phys. 13, 791–802. https://doi.org/10.5194/acp-13-791-2013 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 27.

    Zhang, Y. et al. Changing shapes and implied viscosities of suspended submicron particles. Atmos. Chem. Phys. 15, 7819–7829. https://doi.org/10.5194/acp-15-7819-2015 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 28.

    Fitzgerald, C. et al. Fluorescence lifetime imaging of optically levitated aerosol: a technique to quantitatively map the viscosity of suspended aerosol particles. Phys. Chem. Chem. Phys. 18, 21710–21719. https://doi.org/10.1039/C6CP03674K (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 29.

    Power, R. M., Simpson, S. H., Reid, J. P. & Hudson, A. J. The transition from liquid to solid-like behaviour in ultrahigh viscosity aerosol particles. Chem. Sci. 4, 2597–2604. https://doi.org/10.1039/C3SC50682G (2013).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Renbaum-Wolff, L. et al. Viscosity of (alpha )-pinene secondary organic material and implications for particle growth and reactivity. Proc. Natl. Acad. Sci. 110, 8014–8019. https://doi.org/10.1073/pnas.1219548110 (2013).

    ADS 
    Article 
    PubMed 

    Google Scholar
     

  • 31.

    Koop, T., Bookhold, J., Shiraiwa, M. & Pöschl, U. Glass transition and phase state of organic compounds: dependency on molecular properties and implications for secondary organic aerosols in the atmosphere. Phys. Chem. Chem. Phys. 13, 19238–19255. https://doi.org/10.1039/C1CP22617G (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 32.

    Shiraiwa, M. et al. Global distribution of particle phase state in atmospheric secondary organic aerosols. Nat. Commun. 8, 15002 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 33.

    Grayson, J. W. et al. The effect of hydroxyl functional groups and molar mass on the viscosity of non-crystalline organic and organic-water particles. Atmos. Chem. Phys. 17, 8509–8524. https://doi.org/10.5194/acp-17-8509-2017 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 34.

    Champion, W. M., Rothfuss, N. E., Petters, M. D. & Grieshop, A. P. Volatility and viscosity are correlated in Terpene secondary organic aerosol formed in a flow reactor. Environ. Sci. Technol. Lett. 6, 513–519. https://doi.org/10.1021/acs.estlett.9b00412 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Zhang, Y. et al. The cooling rate- and volatility-dependent glass-forming properties of organic aerosols measured by broadband dielectric spectroscopy. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.9b03317 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Bateman, A. P., Bertram, A. K. & Martin, S. T. Hygroscopic influence on the semisolid-to-liquid transition of secondary organic materials. J. Phys. Chem. A 119, 4386–4395. https://doi.org/10.1021/jp508521c (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 37.

    Song, M. et al. Relative humidity-dependent viscosities of isoprene-derived secondary organic material and atmospheric implications for isoprene-dominant forests. Atmos. Chem. Phys. 15, 5145–5159. https://doi.org/10.5194/acp-15-5145-2015 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 38.

    Pajunoja, A. et al. Adsorptive uptake of water by semisolid secondary organic aerosols. Geophys. Res. Lett. 42, 3063–3068. https://doi.org/10.1002/2015GL063142 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 39.

    Saukko, E. et al. Humidity-dependent phase state of SOA particles from biogenic and anthropogenic precursors. Atmos. Chem. Phys. 12, 7517–7529. https://doi.org/10.5194/acp-12-7517-2012 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 40.

    Petters, S. S., Kreidenweis, S. M., Grieshop, A. P., Ziemann, P. J. & Petters, M. D. Temperature- and humidity-dependent phase states of secondary organic aerosols. Geophys. Res. Lett. 46, 1005–1013. https://doi.org/10.1029/2018GL080563 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 41.

    Slade, J. H. et al. Bouncier particles at night: biogenic secondary organic aerosol chemistry and sulfate drive diel variations in the aerosol phase in a mixed forest. Environ. Sci. Technol. 53, 4977–4987. https://doi.org/10.1021/acs.est.8b07319 (2019).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 42.

    Olson, N. E. et al. Reactive uptake of isoprene epoxydiols increases the viscosity of the core of phase-separated aerosol particles. ACS Earth Space Chem. 3, 1402–1414. https://doi.org/10.1021/acsearthspacechem.9b00138 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 43.

    Bell, D. M., Imre, D. T., Martin, S. & Zelenyuk, A. The properties and behavior of (alpha )-pinene secondary organic aerosol particles exposed to ammonia under dry conditions. Phys. Chem. Chem. Phys. 19, 6497–6507. https://doi.org/10.1039/C6CP08839B (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 44.

    Rothfuss, N. E. & Petters, M. D. Characterization of the temperature and humidity-dependent phase diagram of amorphous nanoscale organic aerosols. Phys. Chem. Chem. Phys. 19, 6532–6545. https://doi.org/10.1039/C6CP08593H (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 45.

    Marsh, A. et al. Amorphous phase state diagrams and viscosity of ternary aqueous organic/organic and inorganic/organic mixtures. Phys. Chem. Chem. Phys. 20, 15086–15097. https://doi.org/10.1039/C8CP00760H (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 46.

    Järvinen, E. et al. Observation of viscosity transition in (alpha )-pinene secondary organic aerosol. Atmos. Chem. Phys. 16, 4423–4438. https://doi.org/10.5194/acp-16-4423-2016 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 47.

    Chenyakin, Y. et al. Diffusion coefficients of organic molecules in sucrose-water solutions and comparison with Stokes–Einstein predictions. Atmos. Chem. Phys. 17, 2423–2435. https://doi.org/10.5194/acp-17-2423-2017 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 48.

    Ullmann, D. A. et al. Viscosities, diffusion coefficients, and mixing times of intrinsic fluorescent organic molecules in brown limonene secondary organic aerosol and tests of the Stokes–Einstein equation. Atmos. Chem. Phys. 19, 1491–1503. https://doi.org/10.5194/acp-19-1491-2019 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 49.

    Maclean, A. M. et al. Mixing times of organic molecules within secondary organic aerosol particles: a global planetary boundary layer perspective. Atmos. Chem. Phys. 17, 13037–13048. https://doi.org/10.5194/acp-17-13037-2017 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 50.

    Tolman, R. C. Consideration of the Gibbs theory of surface tension. J. Chem. Phys. 16, 758–774. https://doi.org/10.1063/1.1746994 (1948).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 51.

    Samsonov, V., Sdobnyakov, N. & Bazulev, A. Size dependence of the surface tension and the problem of Gibbs thermodynamics extension to nanosystems. in A Collection of Papers presented at XVIth European Chemistry at Interfaces Conference, 14–18 May, 2003, Vladimir, Russia vol. 239, 113–117. https://doi.org/10.1016/j.colsurfa.2004.01.016 (2004).

  • 52.

    Biskos, G., Malinowski, A., Russell, L. M., Buseck, P. R. & Martin, S. T. Nanosize effect on the deliquescence and the efflorescence of sodium chloride particles. Aerosol Sci. Technol. 40, 97–106. https://doi.org/10.1080/02786820500484396 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 53.

    Biskos, G., Paulsen, D., Russell, L. M., Buseck, P. R. & Martin, S. T. Prompt deliquescence and efflorescence of aerosol nanoparticles. Atmos. Chem. Phys. 6, 4633–4642. https://doi.org/10.5194/acp-6-4633-2006 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 54.

    Russell, L. M. & Ming, Y. Deliquescence of small particles. J. Chem. Phys. 116, 311–321. https://doi.org/10.1063/1.1420727 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 55.

    Biskos, G., Russell, L. M., Buseck, P. R. & Martin, S. T. Nanosize effect on the hygroscopic growth factor of aerosol particles. Geophys. Res. Lett. https://doi.org/10.1029/2005GL025199 (2006).

    Article 

    Google Scholar
     

  • 56.

    Levdanskii, V. V., Smolik, J. & Moravec, P. Influence of size effects on the critical diameter and growth of nanoparticles. J. Eng. Phys. Thermophys. 79, 217–221. https://doi.org/10.1007/s10891-006-0089-y (2006).

    CAS 
    Article 

    Google Scholar
     

  • 57.

    Altaf, M. B., Zuend, A. & Freedman, M. A. Role of nucleation mechanism on the size dependent morphology of organic aerosol. Chem. Commun. 52, 9220–9223. https://doi.org/10.1039/C6CC03826C (2016).

    CAS 
    Article 

    Google Scholar
     

  • 58.

    Veghte, D. P., Altaf, M. B. & Freedman, M. A. Size dependence of the structure of organic aerosol. J. Am. Chem. Soc. 135, 16046–16049. https://doi.org/10.1021/ja408903g (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 59.

    Laskina, O. et al. Size matters in the water uptake and hygroscopic growth of atmospherically relevant multicomponent aerosol particles. J. Phys. Chem. A 119, 4489–4497. https://doi.org/10.1021/jp510268p (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 60.

    Werner, J. et al. Surface partitioning in organic-inorganic mixtures contributes to the size-dependence of the phase-state of atmospheric nanoparticles. Environ. Sci. Technol. 50, 7434–7442. https://doi.org/10.1021/acs.est.6b00789 (2016).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 61.

    Virtanen, A. et al. Bounce behavior of freshly nucleated biogenic secondary organic aerosol particles. Atmos. Chem. Phys. 11, 8759–8766. https://doi.org/10.5194/acp-11-8759-2011 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 62.

    Cheng, Y., Su, H., Koop, T., Mikhailov, E. & Pöschl, U. Size dependence of phase transitions in aerosol nanoparticles. Nat. Commun. 6, 5923 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 63.

    Kaptay, G. The Gibbs equation versus the Kelvin and the Gibbs–Thomson equations to describe nucleation and equilibrium of nano-materials. J. Nanosci. Nanotechnol. 12, 2625–2633. https://doi.org/10.1166/jnn.2012.5774 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 64.

    Campbell, C. T., Parker, S. C. & Starr, D. E. The effect of size-dependent nanoparticle energetics on catalyst sintering. Science 298, 811–814. https://doi.org/10.1126/science.1075094 (2002).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 65.

    Letellier, P., Mayaffre, A. & Turmine, M. Melting point depression of nanosolids: nonextensive thermodynamics approach. Phys. Rev. B 76, 045428. https://doi.org/10.1103/PhysRevB.76.045428 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 66.

    Jiang, Q., Yang, C. C. & Li, J. C. Size-dependent melting temperature of polymers. Macromol. Theory Simul. 12, 57–60. https://doi.org/10.1002/mats.200390003 (2003).

    CAS 
    Article 

    Google Scholar
     

  • 67.

    David, T. B., Lereah, Y., Deutscher, G., Kofman, R. & Cheyssac, P. Solid–liquid transition in ultra-fine lead particles. Philos. Mag. A 71, 1135–1143. https://doi.org/10.1080/01418619508236241 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 68.

    Wronski, C. R. M. The size dependence of the melting point of small particles of tin. Br. J. Appl. Phys. 18, 1731–1737. https://doi.org/10.1088/0508-3443/18/12/308 (1967).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 69.

    Castro, T., Reifenberger, R., Choi, E. & Andres, R. P. Size-dependent melting temperature of individual nanometer-sized metallic clusters. Phys. Rev. B 42, 8548–8556. https://doi.org/10.1103/PhysRevB.42.8548 (1990).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 70.

    Wunderlich, B. & Czornyj, G. A study of equilibrium melting of polyethylene. Macromolecules 10, 906–913. https://doi.org/10.1021/ma60059a006 (1977).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 71.

    Angell, C. A. Formation of glasses from liquids and biopolymers. Science 267, 1924. https://doi.org/10.1126/science.267.5206.1924 (1995).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 72.

    Angell, C. A. Liquid fragility and the glass transition in water and aqueous solutions. Chem. Rev. 102, 2627–2650. https://doi.org/10.1021/cr000689q (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 73.

    Longinotti, M. P. & Corti, H. R. Viscosity of concentrated sucrose and trehalose aqueous solutions including the supercooled regime. J. Phys. Chem. Ref. Data 37, 1503–1515. https://doi.org/10.1063/1.2932114 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 74.

    Gordon, M. & Taylor, J. S. Ideal copolymers and the second-order transitions of synthetic rubbers. I. non-crystalline copolymers. J. Appl. Chem. 2, 493–500. https://doi.org/10.1002/jctb.5010020901 (1952).

    CAS 
    Article 

    Google Scholar
     

  • 75.

    Baustian, K. J. et al. State transformations and ice nucleation in amorphous (semi-)solid organic aerosol. Atmos. Chem. Phys. 13, 5615–5628. https://doi.org/10.5194/acp-13-5615-2013 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 76.

    Wang, B. et al. The deposition ice nucleation and immersion freezing potential of amorphous secondary organic aerosol: pathways for ice and mixed-phase cloud formation. J. Geophys. Res. Atmos. https://doi.org/10.1029/2012JD018063 (2012).

    ADS 
    Article 

    Google Scholar
     

  • 77.

    Lienhard, D. M., Zobrist, B., Zuend, A., Krieger, U. K. & Peter, T. Experimental evidence for excess entropy discontinuities in glass-forming solutions. J. Chem. Phys. 136, 074515. https://doi.org/10.1063/1.3685902 (2012).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 78.

    Petters, M. D. & Kreidenweis, S. M. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity—part 2: including solubility. Atmos. Chem. Phys. 8, 6273–6279. https://doi.org/10.5194/acp-8-6273-2008 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 79.

    Mikhailov, E., Vlasenko, S., Rose, D. & Pöschl, U. Mass-based hygroscopicity parameter interaction model and measurement of atmospheric aerosol water uptake. Atmos. Chem. Phys. 13, 717–740. https://doi.org/10.5194/acp-13-717-2013 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 80.

    Pinal, R. Entropy of mixing and the glass transition of amorphous mixtures. Entropy. https://doi.org/10.3390/entropy-e10030207 (2008).

    Article 

    Google Scholar
     

  • 81.

    Fox, T. G. Influence of diluent and of copolymer composition on the glass temperature of a polymer system. Bull. Am. Phys. Soc. 1, 123 (1956).

    CAS 

    Google Scholar
     

  • 82.

    Couchman, P. R. & Karasz, F. E. A classical thermodynamic discussion of the effect of composition on glass-transition temperatures. Macromolecules 11, 117–119. https://doi.org/10.1021/ma60061a021 (1978).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 83.

    Kwei, T. K. The effect of hydrogen bonding on the glass transition temperatures of polymer mixtures. J. Polym. Sci. Polym. Lett. Ed. 22, 307–313. https://doi.org/10.1002/pol.1984.130220603 (1984).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 84.

    Suda, S. R. et al. Hygroscopicity frequency distributions of secondary organic aerosols. J. Geophys. Res. Atmos. https://doi.org/10.1029/2011JD016823 (2012).

    Article 

    Google Scholar
     

  • 85.

    Heaton, K. J., Sleighter, R. L., Hatcher, P. G., Hall, W. A. & Johnston, M. V. Composition domains in monoterpene secondary organic aerosol. Environ. Sci. Technol. 43, 7797–7802. https://doi.org/10.1021/es901214p (2009).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 86.

    Drake, A. C. et al. Effect of water content on the glass transition temperature of mixtures of sugars, polymers, and penetrating cryoprotectants in physiological buffer. PLOS ONE 13, e0190713. https://doi.org/10.1371/journal.pone.0190713 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 87.

    DeRieux, W.-S.W. et al. Predicting the glass transition temperature and viscosity of secondary organic material using molecular composition. Atmos. Chem. Phys. 18, 6331–6351. https://doi.org/10.5194/acp-18-6331-2018 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 88.

    Abramson, E., Imre, D., Beránek, J., Wilson, J. & Zelenyuk, A. Experimental determination of chemical diffusion within secondary organic aerosol particles. Phys. Chem. Chem. Phys. 15, 2983–2991. https://doi.org/10.1039/C2CP44013J (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 89.

    Kidd, C., Perraud, V., Wingen, L. M. & Finlayson-Pitts, B. J. Integrating phase and composition of secondary organic aerosol from the ozonolysis of (alpha )-pinene. Proc. Natl Acad. Sci. 111, 7552–7557. https://doi.org/10.1073/pnas.1322558111 (2014).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 90.

    Pajunoja, A. et al. Estimating the viscosity range of SOA particles based on their coalescence time. Aerosol Sci. Technol. 48, i–iv. https://doi.org/10.1080/02786826.2013.870325 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 91.

    Grayson, J. W. et al. Effect of varying experimental conditions on the viscosity of (alpha )-pinene derived secondary organic material. Atmos. Chem. Phys. 16, 6027–6040. https://doi.org/10.5194/acp-16-6027-2016 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 92.

    Bateman, A. P., Belassein, H. & Martin, S. T. Impactor apparatus for the study of particle rebound: relative humidity and capillary forces. Aerosol Sci. Technol. 48, 42–52. https://doi.org/10.1080/02786826.2013.853866 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 93.

    Li, Y., Day, D. A., Stark, H., Jimenez, J. & Shiraiwa, M. Predictions of the glass transition temperature and viscosity of organic aerosols by volatility distributions. Atmos. Chem. Phys. Discuss. https://doi.org/10.5194/acp-2019-1132 (2020).

    Article 

    Google Scholar
     

  • 94.

    Petters, M. D., Kreidenweis, S. M. & Ziemann, P. J. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods. Geosci. Model Dev. 9, 111–124. https://doi.org/10.5194/gmd-9-111-2016 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 95.

    Petters, M. D. et al. Role of molecular size in cloud droplet activation. Geophys. Res. Lett. https://doi.org/10.1029/2009GL040131 (2009).

    Article 

    Google Scholar
     

  • 96.

    Akbulut, S. et al. Solid–liquid interfacial energy of pyrene. J. Appl. Phys. 100, 123505. https://doi.org/10.1063/1.2402098 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 97.

    Wong, W.-K. & Westrum, E. F. Thermodynamics of polynuclear aromatic molecules I. Heat capacities and enthalpies of fusion of pyrene, fluoranthene, and triphenylene. J. Chem. Thermodyn. 3, 105–124. https://doi.org/10.1016/S0021-9614(71)80071-X (1971).

    CAS 
    Article 

    Google Scholar
     

  • 98.

    Chen, D., Totton, T. S., Akroyd, J. W., Mosbach, S. & Kraft, M. Size-dependent melting of polycyclic aromatic hydrocarbon nano-clusters: a molecular dynamics study. Carbon 67, 79–91. https://doi.org/10.1016/j.carbon.2013.09.058 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 99.

    Koppes, J. P., Muza, A. R., Stach, E. A. & Handwerker, C. H. Comment on “Size-dependent melting properties of small tin particles: nanocalorimetric measurements”. Phys. Rev. Lett. 104, 189601. https://doi.org/10.1103/PhysRevLett.104.189601 (2010).

  • 100.

    Lai, S. L., Guo, J. Y., Petrova, V., Ramanath, G. & Allen, L. H. Size-dependent melting properties of small tin particles: nanocalorimetric measurements. Phys. Rev. Lett. 77, 99–102. https://doi.org/10.1103/PhysRevLett.77.99 (1996).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 101.

    Lu, H. M., Li, P. Y., Cao, Z. H. & Meng, X. K. Size-, shape-, and dimensionality-dependent melting temperatures of nanocrystals. J. Phys. Chem. C 113, 7598–7602. https://doi.org/10.1021/jp900314q (2009).

    CAS 
    Article 

    Google Scholar
     

  • 102.

    Dick, K., Dhanasekaran, T., Zhang, Z. & Meisel, D. Size-dependent melting of silica-encapsulated gold nanoparticles. J. Am. Chem. Soc. 124, 2312–2317. https://doi.org/10.1021/ja017281a (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 103.

    Jackson, C. L. & McKenna, G. B. The melting behavior of organic materials confined in porous solids. J. Chem. Phys. 93, 9002–9011. https://doi.org/10.1063/1.459240 (1990).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 104.

    Rothe, M. & Rothe, I. Physical data of oligomers. In Polymer Handbook 3rd edn (eds Brandrup, J. & Immergut, E. H.) IV/2 (Wiley, New York, 1989).


    Google Scholar
     

  • 105.

    Rothe, M. & Rothe, I. Physical data of oligomers. In Polymer Handbook 3rd edn (eds Brandrup, J. & Immergut, E. H.) IV/4 (Wiley, New York, 1989).


    Google Scholar
     

  • 106.

    Petters, M. D. & Kreidenweis, S. M. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys. 7, 1961–1971. https://doi.org/10.5194/acp-7-1961-2007 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 107.

    Varutbangkul, V. et al. Hygroscopicity of secondary organic aerosols formed by oxidation of cycloalkenes, monoterpenes, sesquiterpenes, and related compounds. Atmos. Chem. Phys. 6, 2367–2388. https://doi.org/10.5194/acp-6-2367-2006 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 108.

    Petters, M. D. et al. Towards closing the gap between hygroscopic growth and activation for secondary organic aerosol—part 2: theoretical approaches. Atmos. Chem. Phys. 9, 3999–4009. https://doi.org/10.5194/acp-9-3999-2009 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 109.

    Kuwata, M., Zorn, S. R. & Martin, S. T. Using elemental ratios to predict the density of organic material composed of carbon, hydrogen, and oxygen. Environ. Sci. Technol. 46, 787–794. https://doi.org/10.1021/es202525q (2012).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 110.

    Pokluda, O., Bellehumeur, C. T. & Vlachopoulos, J. Modification of Frenkel’s model for sintering. AIChE J. 43, 3253–3256. https://doi.org/10.1002/aic.690431213 (1997).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *