Proposal for an electrostrictive logic device with the epitaxial oxide heterostructure


  • 1.

    Aly, M. M. S. et al. Energy-efficient abundant-data computing: the N3XT 1,000 x. Computer 48, 24–33 (2015).


    Google Scholar
     

  • 2.

    Gonzalez, R. & Horowitz, M. Energy dissipation in general purpose microprocessors. IEEE J. Solid-State Circuits 31, 1277–1284 (1996).

    ADS 
    Article 

    Google Scholar
     

  • 3.

    Chandrakasan, A. P. & Brodersen, R. W. Minimizing power consumption in digital CMOS circuits. Proc. IEEE 83, 498–523 (1995).

    Article 

    Google Scholar
     

  • 4.

    Haensch, W. et al. Silicon CMOS devices beyond scaling. IBM J. Res. Dev. 50, 339–361 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    van Hemert, T. & Hueting, R. J. Piezoelectric strain modulation in FETs. IEEE Trans. Electron Devices 60, 3265–3270 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 6.

    Lu, H. & Seabaugh, A. Tunnel field-effect transistors: State-of-the-art. IEEE J. Electron Devices Soc. 2, 44–49 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Cao, W., Kang, J. & Banerjee, K. 2D/3D tunnel-FET: Toward green transistors and sensors. ECS Trans. 77, 185–189 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 8.

    Salahuddin, S. & Datta, S. Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 8, 405–410 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 9.

    Zhang, H. et al. 2D negative capacitance field-effect transistor with organic ferroelectrics. Nanotechnology 29, 244004 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 10.

    Das, S. Two dimensional electrostrictive field effect transistor (2D-EFET): a sub-60mV/decade steep slope device with high on current. Sci. Rep. 6, 1–7 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 12.

    Zhang, Z. et al. Strain-modulated bandgap and piezo-resistive effect in black phosphorus field-effect transistors. Nano Lett. 17, 6097–6103 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 13.

    Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 14.

    Ngo, T. Q. et al. Epitaxial c-axis oriented BaTiO3 thin films on SrTiO3-buffered Si(001) by atomic layer deposition. Appl. Phys. Lett. 104, 082910 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 15.

    Niu, G. et al. Epitaxy of BaTiO3 thin film on Si(001) using a SrTiO3 buffer layer for non-volatile memory application. Microelectron. Eng. 88, 1232–1235 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Liu, Z. Q. et al. Bandgap Control of the oxygen-vacancy-induced two-dimensional electron gas in SrTiO3. Adv. Mater. Interfaces 1, 1400155 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 17.

    COMSOL Multiphysics® Software. Understand, Predict, and Optimize. COMSOL Multiphysics® https://www.comsol.com/comsol-multiphysics.

  • 18.

    Chang, L. et al. Practical strategies for power-efficient computing technologies. Proc. IEEE 98, 215–236 (2010).

    Article 

    Google Scholar
     

  • 19.

    Kelley, K. P. et al. Thickness and strain dependence of piezoelectric coefficient in BaTiO3 thin films. Phys. Rev. Mater. 4, 024407 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Piezoelectric Materials: Understanding the Standards. COMSOL Multiphysics https://www.comsol.com/blogs/piezoelectric-materials-understanding-standards/ (2014).

  • 21.

    Srinivasa Rao, K. et al. Design and simulation of MEMS based piezoelectric shear actuated beam. Materials 2, 179–184 (2012).

    Article 

    Google Scholar
     

  • 22.

    Piefort, V. Finite Element Modelling of Piezoelectric Active Structures. Ph. D. thesis. Bruxelles, Belgium: Université Libre de Bruxelles (2001).

  • 23.

    Benjeddou, A., Trindade, M. A. & Ohayon, R. A Unified Beam Finite Element Model for Extension and Shear Piezoelectric Actuation Mechanisms. J. Intell. Mater. Syst. Struct. 8, 1012–1025 (1997).

    Article 

    Google Scholar
     

  • 24.

    Singularities in Finite Element Models: Dealing with Red Spots. COMSOL Multiphysics https://www.comsol.com/blogs/singularities-in-finite-element-models-dealing-with-red-spots/ (2015).

  • 25.

    You, Y. H., Kou, X. Y. & Tan, S. T. Adaptive meshing for finite element analysis of heterogeneous materials. Comput. Aided Des. 62, 176–189 (2015).

    Article 

    Google Scholar
     

  • 26.

    Kalabukhov, A. et al. Effect of oxygen vacancies in the SrTiO 3 substrate on the electrical properties of the LaAlO3∕ SrTiO3 interface. Phys. Rev. B 75, 121404 (2007).

    ADS 
    Article 

    Google Scholar
     

  • 27.

    Enriquez, E. et al. Oxygen vacancy-tuned physical properties in perovskite thin films with multiple B-site valance states. Sci. Rep. 7, 46184 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 28.

    Schlom, D. G. Perspective: oxide molecular-beam epitaxy rocks!. APL Mater. 3, 062403 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 29.

    Baek, S.-H. & Eom, C.-B. Epitaxial integration of perovskite-based multifunctional oxides on silicon. Acta Mater. 61, 2734–2750 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Saint-Girons, G. et al. Epitaxy of SrTiO3 on silicon: the knitting machine strategy. Chem. Mater. 28, 5347–5355 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 31.

    Wang, S. et al. Study on the Multi-level Resistance-Switching Memory and Memory-State-Dependent Photovoltage in Pt/Nd: SrTiO 3 Junctions. Nanoscale Res. Lett. 13, 18 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 32.

    Gao, S., Yi, X., Shang, J., Liu, G. & Li, R.-W. Organic and hybrid resistive switching materials and devices. Chem. Soc. Rev. 48, 1531–1565 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 33.

    Chandrasena, R. U. et al. Strain-engineered oxygen vacancies in CaMnO3 thin films. Nano Lett. 17, 794–799 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 34.

    Prakash, A., Deleruyelle, D., Song, J., Bocquet, M. & Hwang, H. Resistance controllability and variability improvement in a TaOx-based resistive memory for multilevel storage application. Appl. Phys. Lett. 106, 233104 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 35.

    Aschauer, U. et al. Strain-controlled oxygen vacancy formation and ordering in CaMnO3. Phys. Rev. B 88, 054111 (2013).

    ADS 
    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *