Protein signatures of seminal plasma from bulls with contrasting frozen-thawed sperm viability


  • 1.

    Grötter, L. G., Cattaneo, L., Marini, P. E., Kjelland, M. E. & Ferré, L. B. Recent advances in bovine sperm cryopreservation techniques with a focus on sperm post-thaw quality optimization. Reprod. Domest. Anim. 54, 655–665 (2019).

    PubMed 

    Google Scholar
     

  • 2.

    Pukazhenthi, B. S. Saving wild ungulate diversity through enhanced management and sperm cryopreservation. Fertil. Dev. 28, 1133–1144 (2016).


    Google Scholar
     

  • 3.

    Rozati, H., Handley, T. & Jayasena, C. N. Process and pitfalls of sperm cryopreservation. J. Clin. Med. 6, pii: E89 (2017).

  • 4.

    Tournaye, H., Dohle, G. R. & Barratt, C. L. Fertility preservation in men with cancer. Lancet 384, 1295–1301 (2014).

    PubMed 

    Google Scholar
     

  • 5.

    Hezavehei, M. et al. Sperm cryopreservation: A review on current molecular cryobiology and advanced approaches. Reprod. Biomed. Online. 37, 327–339 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Amidi, F., Pazhohan, A., Shabani Nashtaei, M., Khodarahmian, M. & Nekoonam, S. The role of antioxidants in sperm freezing: A review. Cell Tissue Bank. 17, 745–756 (2016).

  • 7.

    Rego, J. P. et al. Proteomic analysis of seminal plasma and sperm cells and their associations with semen freezability in Guzerat bulls. J. Anim. Sci. 94, 5308–5320 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Kumar, A., Prasad, J. K., Srivastava, N. & Ghosh, S. K. Strategies to minimize various stress-related freeze-thaw damages during conventional cryopreservation of mammalian spermatozoa. Biopreserv. Biobank. 17, 603–612 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Thurston, L. M., Watson, P. F., Mileham, A. J. & Hol, W. V. Morphologically distinct sperm subpopulations defined by Fourier shape descriptors in fresh ejaculates correlate with variation in boar semen quality following cryopreservation. J. Androl. 22, 382–394 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Moura, A. A. et al. Seminal plasma proteins and metabolites: Effects on sperm function and potential as fertility markers. Anim. Reprod. 15, 691–702 (2018).


    Google Scholar
     

  • 11.

    Camargo, M., Intasqui, P. & Bertolla, R. P. Understanding the seminal plasma proteome and its role in male fertility. Basic Clin. Androl. 28, 6 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Plante, G., Prud’homme, B., Fan, J., Lafleur, M. & Manjunath, P. Evolution and function of mammalian binder of sperm proteins. Cell Tissue Res. 363, 105–127 (2016).

    CAS 

    Google Scholar
     

  • 13.

    Pini, T. et al. Binder of sperm proteins protect ram spermatozoa from freeze-thaw damage. Cryobiology 82, 78–87 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Moura, A. A., Chapman, D. A. & Killian, G. J. Proteins of the accessory sex glands associated with the oocyte-penetrating capacity of cauda epididymal sperm from holstein bulls of documented fertility. Mol. Reprod. Dev. 74, 214–222 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Viana, A. G. A. et al. Proteomic landscape of seminal plasma associated with dairy bull fertility. Sci. Rep. 8, 16323 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Fernández-Gago, R., Domínguez, J. C. & Martínez-Pastor, F. Seminal plasma applied post-thawing affects boar sperm physiology: A flow cytometry study. Theriogenology 80, 400–410 (2013).

    PubMed 

    Google Scholar
     

  • 17.

    Torres, M. A. et al. Seminal plasma arising from the whole boar sperm-rich fraction increases the stability of sperm membrane after thawing. J. Anim. Sci. 94, 1906–1912 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Yeste, M. et al. The increase in phosphorylation levels of serine residues of protein HSP70 during holding time at 176C is concomitant with a higher cryotolerance of boar spermatozoa. PLoS ONE 9, e90887 (2014).

    ADS 
    PubMed 

    Google Scholar
     

  • 19.

    Rodríguez-Villamil, P. et al. Purification of binder of sperm protein 1 (BSP1) and its effects on bovine in vitro embryo development after fertilization with ejaculated and epididymal sperm. Theriogenology 85, 540–554 (2016).

    PubMed 

    Google Scholar
     

  • 20.

    Gonçalves, R. F., Chapman, D. A., Bertolla, R. P., Eder, I. & Killian, G. J. Pre-treatment of cattle semen or oocytes with purified milk osteopontin affects in vitro fertilization and embryo development. Anim. Reprod. Sci. 108, 375–383 (2008).

    PubMed 

    Google Scholar
     

  • 21.

    Hao, Y. et al. Osteopontin improves in vitro development of porcine embryos and decreases apoptosis. Mol. Reprod. Dev. 75, 291–298 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Boccia, L. et al. Osteopontin improves sperm capacitation and in vitro fertilization efficiency in buffalo (Bubalus bubalis). Theriogenology 80, 212–217 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Jiang, H. Y. et al. The growth arrest specific gene (gas6) protein is expressed in abnormal embryos sired by male golden hamsters with accessory sex glands removed. Anat. Embryol. (Berl). 203, 343–355 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Chan, O. C., Chow, P. H., O, W. S. Total ablation of paternal accessory sex glands curtails developmental potential in preimplantation embryos in the golden hamster. Anat. Embryol. (Berl). 204, 117–122 (2001).

  • 25.

    Sharkey, D. J., Macpherson, A. M., Tremellen, K. P. & Robertson, S. A. Seminal plasma differentially regulates inflammatory cytokine gene expression in human cervical and vaginal epithelial cells. Mol. Hum. Reprod. 13, 491–501 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Chen, J. C. et al. Seminal plasma induces global transcriptomic changes associated with cell migration, proliferation and viability in endometrial epithelial cells and stromal fibroblasts. Hum. Reprod. 29, 1255–1270 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Maranesi, M. et al. New insights on a NGF-mediated pathway to induce ovulation in rabbits (Oryctolagus cuniculus). Biol. Reprod. 98, 634–643 (2018).

    PubMed 

    Google Scholar
     

  • 28.

    Ratto, M. H., Berland, M. A., Silva, M. E. & Adams, G. New insights of the role of β-NGF in the ovulation mechanism of induced ovulating species. Reproduction 157, R199–R207 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Gilany, K., Minai-Tehrani, A., Savadi-Shiraz, E., Rezadoost, H. & Lakpour, N. Exploring the human seminal plasma proteome: An unexplored gold mine of biomarker for male infertility and male reproduction disorder. J. Reprod. Infertil. 16, 61–71 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Schirmer, E. C., Yates, J. R. 3rd. & L, Gerace. MudPIT: A powerful proteomics tool for discovery. Discov. Med. 3, 38–39 (2003).

  • 31.

    Moura, A. A., Chapman, D. A., Koc, H. & Killian, G. J. A comprehensive proteomic analysis of the accessory sex gland fluid from mature Holstein bulls. Anim. Reprod. Sci. 98, 169–188 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Kelly, V. C. et al. Characterization of bovine seminal plasma by proteomics. Proteomics 6, 5826–5833 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Rego, J. P. et al. Seminal plasma proteome of electroejaculated Bos indicus bulls. Anim. Reprod. Sci. 148, 1–17 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Harshan, H. M. et al. Identification of PDC-109-like protein(s) in buffalo seminal plasma. Anim. Reprod. Sci. 115, 306–311 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Bergeron, A., Villemure, M., Lazure, C. & Manjunath, P. Isolation and characterization of the major proteins of ram seminal plasma. Mol. Reprod. Dev. 71, 461–470 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Souza, C. E. et al. Proteomic analysis of the reproductive tract fluids from tropically-adapted Santa Ines rams. J. Proteomics. 75, 4436–4456 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Villemure, M., Lazure, C. & Manjunath, P. Isolation and characterization of gelatin-binding proteins from goat seminal plasma. Reprod. Biol. Endocrinol. 1, 39 (2003).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Calvete, J. J., Reinert, M., Sanz, L. & Topfer-Petersen, E. Effect of glycosylation on the heparin-binding capability of boar and stallion seminal plasma proteins. J. Chromatogr. A. 711, 167–173 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Bezerra, M. M. et al. Major seminal plasma proteome of rabbits and associations with sperm quality. Theriogenology 128, 156–166 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Suarez, S. S. Mammalian sperm interactions with the female reproductive tract. Cell Tissue Res. 363, 185–194 (2016).

    PubMed 

    Google Scholar
     

  • 41.

    Moura, A. A., Koc, H., Chapman, D. A. & Killian, G. J. Identification of accessory sex gland fluid proteins as related to fertility indexes of dairy bulls: A proteomic approach. J. Androl. 27, 201–211 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Brito, M. F. et al. Label-free proteome of water buffalo (Bubalus bubalis) seminal plasma. Reprod. Domest. Anim. 53, 1243–1246 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Melo, L. M. et al. Buck (Capra hircus) genes encode new members of the spermadhesin family. Mol. Reprod. Dev. 75, 8–16 (2008).

    PubMed 

    Google Scholar
     

  • 44.

    González-Cadavid, V. et al. Seminal plasma proteins of adult boars and correlations with sperm parameters. Theriogenology 82, 697–707 (2014).

    PubMed 

    Google Scholar
     

  • 45.

    Santos, E. A. et al. Protein profile of the seminal plasma of collared peccaries (Pecari tajacu Linnaeus, 1758). Reproduction 147, 753–764 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Töpfer-Petersen, E. et al. Spermadhesins: A new protein family. Facts, hypotheses and perspectives. Andrologia. 30, 217–24 (1998).

  • 47.

    Ekhlasi-Hundrieser, M. et al. Spermadhesin AQN1 is a candidate receptor molecule involved in the formation of the oviductal sperm reservoir in the pig. Biol. Reprod. 73, 536–545 (2005).

    CAS 

    Google Scholar
     

  • 48.

    Zigo, M., Jonakova, V., Manaskova-Postlerova, P., Kerns, K. & Sutovsky, P. Ubiquitin-proteasome system participates in the de-aggregation of spermadhesin and DQH protein during boar sperm capacitation. Reproduction. 157, 283–295 (2019).

  • 49.

    Janiszewska, E. & Kratz, E. M. Could the glycosylation analysis of seminal plasma clusterin become a novel male infertility biomarker?. Mol. Reprod. Dev. 87, 515–524 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Humphreys, D. T., Carver, J. A., Easterbrook-Smith, S. B. & Wilson, M. R. Clusterin has chaperone-like activity similar to that of small heat shock proteins. J. Biol. Chem. 274, 6875–6881 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Merlotti, A. et al. Fucosylated clusterin in semen promotes the uptake of stress-damaged proteins by dendritic cells via DC-SIGN. Hum. Reprod. 30, 1545–1556 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 52.

    Boe-Hansen, G. B. et al. Seminal plasma proteins and their relationship with percentage of morphologically normal sperm in 2-year-old Brahman (Bos indicus) bulls. Anim. Reprod. Sci. 162, 20–30 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    Bailey, R. & Griswold, M. D. Clusterin in the male reproductive system: localization and possible function. Mol. Cell Endocrinol. 151, 17–23 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 54.

    Aquino-Cortez, A. et al. Proteomic characterization of canine seminal plasma. Theriogenology 95, 178–186 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 55.

    Denhardt, D. T. The third international conference on osteopontin and related proteins, San Antonio, Texas. Calcif Tissue Int. 74, 213–219 (2002).


    Google Scholar
     

  • 56.

    Bouleftour, W. et al. The role of the SIBLING, Bone Sialoprotein in skeletal biology: Contribution of mouse experimental genetics. Matrix Biol. 52(54), 60–77 (2016).

    PubMed 

    Google Scholar
     

  • 57.

    Souza, C. E., Moura, A. A., Monaco, E. & Killian, G. J. Binding patterns of bovine seminal plasma proteins A1/A2, 30 kDa and osteopontin on ejaculated sperm before and after incubation with isthmic and ampullary oviductal fluid. Anim. Reprod. Sci. 105, 72–89 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    Erikson, D. W., Way, A. L., Chapman, D. A. & Killian, G. J. Detection of osteopontin on Holstein bull spermatozoa, in cauda epididymal fluid and testis homogenates, and its potential role in bovine fertilization. Reproduction 133, 909–917 (2008).


    Google Scholar
     

  • 59.

    Monaco, E. et al. Effect of osteopontin (OPN) on in vitro embryo development in cattle. Theriogenology 71, 450–457 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 60.

    Cancel, A. M., Chapman, D. A. & Killian, G. J. Osteopontin is the 55-kilodalton fertility-associated protein in Holstein bull seminal plasma. Biol Reprod. 57, 1293–1301 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • 61.

    Edwards, D. R., Handsley, M. M. & Pennington, C. J. The ADAM metalloproteinases. Mol. Aspects Med. 29, 258–289 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    McCauley, T. C., Zhang, H. M., Bellin, M. E. & Ax, R. L. Identification of a heparin-binding protein in bovine seminal fluid as tissue inhibitor of metalloproteinases-2. Mol. Reprod. Dev. 58, 336–341 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 63.

    Belardin, L. B. et al. Semen levels of matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinases (TIMP) protein families members in men with high and low sperm DNA fragmentation. Sci. Rep. 9, 10234 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    du Plessis, S. S., Agarwal, A., Mohanty, G. & van der Linde, M. Oxidative phosphorylation versus glycolysis: What fuel do spermatozoa use?. Asian J. Androl. 17, 230–235 (2015).

    PubMed 

    Google Scholar
     

  • 65.

    Moura, A. A., Chapman, D. A., Koc, H. & Killian, G.J. Proteins of the cauda epididymal fluid associated with fertility of mature dairy bulls. J. Androl. 27, 534–541 (2006).

  • 66.

    Kishimoto, Y., Hiraiwa, M. & O’Brien, J. S. Saposins: Structure, function, distribution, and molecular genetics. J. Lipid Res. 33, 1255–1267 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • 67.

    Morales, C. R., Zhao, Q., El-Alfy, M. & Suzuki, K. Targeted disruption of the mouse prosaposin gene affects the development of the prostate gland and other male reproductive organs. J. Androl. 21, 765–775 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 68.

    Amann, R. P., Seidel, G. E. Jr. & Brink, Z. A. Exposure of thawed frozen bull sperm to a synthetic peptide before artificial insemination increases fertility. J. Androl. 20, 42–46 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 69.

    Amann, R. P., Shabanowitz, R. B., Huszar, G. & Broder, S. J. Increased in vitro binding of fresh and frozen-thawed human sperm exposed to a synthetic peptide. J. Androl. 20, 655–660 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 70.

    Hirohashi, N. & Yanagimachi, R. Sperm acrosome reaction: Its site and role in fertilization. Biol. Reprod. 99, 127–133 (2018).

    PubMed 

    Google Scholar
     

  • 71.

    Tanaka, K. The proteasome: Overview of structure and functions. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 85, 12–36 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 72.

    Sutovsky, P. Ubiquitin-dependent proteolysis in mammalian spermatogenesis, fertilization, and sperm quality control: Killing three birds with one stone. Microsc. Res. Tech. 61, 88–102 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 73.

    Lippert, T. H., Seeger, H., Schieferstein, G. & Voelter, W. Immunoreactive ubiquitin in human seminal plasma. J. Androl. 14, 130–131 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • 74.

    Baska, K. M. et al. Mechanism of extracellular ubiquitination in the mammalian epididymis. J. Cell Physiol. 215, 684–696 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 75.

    Rickard, J. P. et al. Variation in seminal plasma alters the ability of ram spermatozoa to survive cryopreservation. Reprod. Fertil. Dev. 28, 516–523 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 76.

    Greube, A., Müller, K., Töpfer-Petersen, E., Herrmann, A. & Müller, P. Influence of the bovine seminal plasma protein PDC-109 on the physical state of membranes. Biochemistry 40, 8326–8334 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 77.

    Kim, J. S., Soucek, J., Matousek, J. & Raines, R. T. Catalytic activity of bovine seminal ribonuclease is essential for its immunosuppressive and other biological activities. Biochem. J. 308, 547–550 (1995).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 78.

    Codognoto, V. M. et al. Functional insights into the role of seminal plasma proteins on sperm motility of buffalo. Anim. Reprod. Sci. 195, 251–258 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 79.

    Rickard, J. P. et al. The identification of proteomic markers of sperm freezing resilience in ram seminal plasma. J. Proteomics. 126, 303–311 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 80.

    Moura, A. A., Souza, C. E., Stanley, B. A., Chapman, D. A. & Killian, G. J. Proteomics of cauda epididymal fluid from mature Holstein bulls. J. Proteomics. 73, 2006–2020 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 81.

    Einspanier, R. et al. Localization and concentration of a new bioactive acetic seminal fluid protein (aSFP) in bulls (Bos taurus). J. Reprod. Fertil. 98, 241–244 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • 82.

    Schöneck, C., Braun, J. & Einspanier, R. Sperm viability is influenced in vitro by the bovine seminal protein aSFP: Effects on motility, mitochondrial activity and lipid peroxidation. Theriogenology 45, 633–642 (1996).

    PubMed 

    Google Scholar
     

  • 83.

    Robert, M. & Gagnon, C. Purification and characterization of the active precursor of a human sperm motility inhibitor secreted by the seminal vesicles: Identity with semenogelin. Biol. Reprod. 55, 813–821 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • 84.

    Schröter, F., Müller, K., Müller, P., Krause, E. & Braun, B. C. Recombinant expression of porcine spermadhesin AWN and its phospholipid interaction: Indication for a novel lipid binding property. Reprod. Domest. Anim. 52, 585–595 (2017).

    PubMed 

    Google Scholar
     

  • 85.

    Rhee, S. G. Overview on peroxiredoxin. Mol Cells. 39, 1–5 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 86.

    Knoops, B., Argyropoulou, V., Becker, S., Ferté, L. & Kuznetsova, O. Multiple roles of peroxiredoxins in inflammation. Mol. Cells. 39, 60–64 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 87.

    Ismail, T., Kim, Y., Lee, H., Lee, D. S. & Lee, H. S. Interplay between mitochondrial peroxiredoxins and ROS in cancer development and progression. Int. J. Mol. Sci. 20, 4407 (2019).

    CAS 
    PubMed Central 

    Google Scholar
     

  • 88.

    Agarwal, A., Durairajanayagam, D., Halabi, J., Peng, J. & Vazquez-Levin, M. Proteomics, oxidative stress and male infertility. Rev. Reprod. Biomed. Online. 29, 32–58 (2014).

    CAS 

    Google Scholar
     

  • 89.

    Hamada, A. et al. Two-dimensional differential in-gel electrophoresis-based proteomics of male gametes in relation to oxidative stress. Fertil. Steril. 99, 1216–1226, e2 (2013).

  • 90.

    Sharma, R. et al. Proteomic analysis of human spermatozoa proteins with oxidative stress. Reprod. Biol. Endocrinol. 11, 48 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 91.

    Matsuki, S., Sasagawa, I., Iuchi, Y. & Fujii, J. Impaired expression of peroxiredoxin 4 in damaged testes by artificial cryptorchidism. Redox Rep. 7, 276–278 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 92.

    Nagdas, S. K., Buchanan, T. & Raychoudhury, S. Identification of peroxiredoxin-5 in bovine cauda epididymal sperm. Mol. Cell Biochem. 387, 113–121 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 93.

    Kierszenbaum, A. L. Sperm axoneme: A tale of tubulin posttranslation diversity. Mol. Reprod. Dev. 62, 1–3 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 94.

    Inaba, K. Sperm flagella: Comparative and phylogenetic perspectives of protein components. Mol. Hum. Reprod. 17, 524–538 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 95.

    Teixeira, F. K. et al. ATP synthase promotes germ cell differentiation independent of oxidative phosphorylation. Nat. Cell Biol. 17, 689–696 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 96.

    Collins, C. M., Malacrida, B., Burke, C., Kiely, P. A. & Dunleavy, E. M. ATP synthase F1 subunits recruited to centromeres by CENP-A are required for male meiosis. Nat. Commun. 9, 2702 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 97.

    Guo, Y. et al. Proteomics analysis of asthenozoospermia and identification of glucose-6-phosphate isomerase as an important enzyme for sperm motility. J. Proteomics. 208, 103478 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 98.

    Zong, M. et al. Glucose-6-phosphate isomerase promotes the proliferation and inhibits the apoptosis in fibroblast-like synoviocytes in rheumatoid arthritis. Art. Res. Ther. 17, 100 (2015).


    Google Scholar
     

  • 99.

    Miki, K. et al. Glyceraldehyde 3-phosphate dehydrogenase-S, a sperm-specific glycolytic enzyme, is required for sperm motility and male fertility. PNAS 101, 16501–16506 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 100.

    Westhoff, D. & Kamp, G. Glyceraldehyde 3-phosphate dehydrogenase is bound to the fibrous sheath of mammalian spermatozoa. J. Cell Sci. 110, 1821–1829 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • 101.

    Herrero, M. B. et al. Mouse SLLP1, a sperm lysozyme-like protein involved in sperm–egg binding and fertilization. Dev. Biol. 284, 126–142 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 102.

    Fujihara, Y. et al. Sperm equatorial segment protein 1, SPESP1, is required for fully fertile sperm in mouse. J. Cell Sci. 123, 1531–1536 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 103.

    Marín-Briggiler, C. I. et al. Evidence of the presence of calcium/calmodulindependent protein kinase IV in human sperm and its involvement in motility regulation. J. Cell Sci. 118, 2013–2022 (2005).

    PubMed 

    Google Scholar
     

  • 104.

    Zeng, H.-T. & Tulsiani, D. R. P. Calmodulin antagonists differentially affect capacitation-associated protein tyrosine phosphorylation of mouse sperm components. J Cell Sci. 116, 1981–1989 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 105.

    Finkelstein, M., Etkovitz, N. & Breitbart, H. Role and regulation of sperm gelsolin prior to fertilization. J. Biol. Chem. 285, 39702–39709 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 106.

    Luconi, M. et al. Uteroglobin and transglutaminase modulate human sperm functions. J. Androl. 21, 676–688 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 107.

    Jackson, B. C. et al. Update of the human secretoglobin (SCGB) gene superfamily and an example of ‘evolutionary bloom’ of androgenbinding protein genes within the mouse Scgb gene superfamily. Hum. Genom. 6, 691–702 (2000).


    Google Scholar
     

  • 108.

    Washburn, M. P., Wolters, D. & Yates, J. R. 3rd. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19, 242–247 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 109.

    Pace, M. M., Sullivan, J. J., Elliott, F. I., Graham, E. F. & Coulter, G. H. Effects of thawing temperature, number of spermatozoa and spermatozoal quality on fertility of bovine spermatozoa packaged in 5-ml French straws. J Anim Sci. 53, 693–701 (1981).

  • 110.

    Nagy, S., Jansen, J., Topper, E. K. & Gadella, B. M. A triple-stain flow cytometric method to assess plasma and acrosome-membrane integrity of cryopreserved bovine sperm immediately after thawing in presence of egg-yolk particles. Biol. Reprod. 68, 1828–1835 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 111.

    Xu, T. et al. ProLuCID: An improved SEQUEST-like algorithm with enhanced sensitivity and specificity. J. Proteomics. 129, 16–24 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 112.

    Cociorva, D., L. Tabb D. & Yates, J. R. Validation of Tandem Mass Spectrometry Database Search Results Using DTASelect in Current Protocols in Bioinformatics. Unit 13.4 (Baxevanis, A. D. et al.2007).

  • 113.

    Tabb, D. L., McDonald, W. H. & Yates, J. R. III. DTASelect and contrast: Tools for assembling and comparing protein identifications from shotgun proteomics. J Proteome Res. 1, 21–26 (2002).

  • 114.

    Park, S. K., Venable, J. D., Xu, T. & Yates, J. R. 3rd. A quantitative analysis software tool for mass spectrometry-based proteomics. Nat. Methods. 5, 319–322 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 115.

    SAS Institute Inc. SAS/IML® 14.1 User’s Guide. (SAS Institute Inc, Cary, 2015).

  • 116.

    Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    CAS 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *