Quantum-assisted photoelectric gain effects in perovskite solar cells


  • 1.

    Jena, A. K., Kulkarni, A. & Miyasaka, T. Halide perovskite photovoltaics: background, status, and future prospects. Chem. Rev. 119, 3036–3103 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Jeon, N. J. et al. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat. Energy 3, 682–689 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Rong, Y. et al. Challenges for commercializing perovskite solar cells. Science 361, eaat8235 (2018).

    Article 

    Google Scholar
     

  • 4.

    Lu, Y.-A. et al. Coral-like perovskite nanostructures for enhanced light-harvesting and accelerated charge extraction in perovskite solar cells. Nano Energy 58, 138–146 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Bai, S. et al. Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 571, 245–250 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Pisoni, S. et al. Tailored lead iodide growth for efficient flexible perovskite solar cells and thin-film tandem devices. NPG Asia Mater. 10, 1076–1085 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Li, S.-S. et al. Intermixing-seeded growth for high-performance planar heterojunction perovskite solar cells assisted by precursor-capped nanoparticles. Energy Environ. Sci. 9, 1282–1289 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Wang, Y.-C. et al. Electron‐transport‐layer‐assisted crystallization of perovskite films for high‐efficiency planar heterojunction solar cells. Adv. Funct. Mater. 28, 1706317 (2018).

    Article 

    Google Scholar
     

  • 9.

    Shirayama, M. et al. Optical transitions in hybrid perovskite solar cells: ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3. Phys. Rev. Appl. 5, 014012 (2016).

    Article 

    Google Scholar
     

  • 10.

    Best Research-Cell Efficiencies. https://www.nrel.gov/pv/cell-efficiency.html (NREL, 2019).

  • 11.

    Extance, A. The reality behind solar power’s next star material. Nature 570, 429–432 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Leijtens, T., Bush, K. A., Prasanna, R. & McGehee, M. D. Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat. Energy 3, 828–838 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Bush, K. A. et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2, 17009 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Sahli, F. et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater. 17, 820–826 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Chen, B. et al. Grain engineering for perovskite/silicon monolithic tandem solar cells with efficiency of 25.4%. Joule 3, 177–190 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Green, M. A. & Bremner, S. P. Energy conversion approaches and materials for high-efficiency photovoltaics. Nat. Mater. 16, 23–34 (2017).

    Article 

    Google Scholar
     

  • 17.

    Nayak, P. K., Mahesh, S., Snaith, H. J. & Cahen, D. Photovoltaic solar cell technologies: analysing the state of the art. Nat. Rev. Mater. 4, 269–285 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Duong, T. et al. Rubidium multication perovskite with optimized bandgap for perovskite‐silicon tandem with over 26% efficiency. Adv. Energy Mater. 7, 1700228 (2017).

    Article 

    Google Scholar
     

  • 19.

    Zhang, W. et al. Enhancement of perovskite-based solar cells employing core-shell metal nanoparticles. Nano Lett. 13, 4505–4510 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Svrcek, V. et al. A silicon nanocrystal/polymer nanocomposite as a down-conversion layer in organic and hybrid solar cells. Nanoscale 7, 11566–11574 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Maier-Flaig, F. et al. Multicolor silicon light-emitting diodes (SiLEDs). Nano Lett. 13, 475–480 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Priolo, F., Gregorkiewicz, T., Galli, M. & Krauss, T. F. Silicon nanostructures for photonics and photovoltaics. Nat. Nanotechnol. 9, 19–32 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Meinardi, F. et al. Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots. Nat. Photonics 11, 177–185 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 24.

    Canham, L. T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046–1048 (1990).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Fauchet, P. M. Light emission from Si quantum dots. Mater. Today 8, 26–33 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Mizuno, H., Koyama, H. & Koshida, N. Oxide-free blue photoluminescence from photochemically etched porous silicon. Appl. Phys. Lett. 69, 3779–3781 (1996).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Dohnalová, K. et al. Surface brightens up Si quantum dots: direct bandgap-like size-tunable emission. Light Sci. Appl. 2, e47 (2013).

    Article 

    Google Scholar
     

  • 28.

    Yuan, Z., Nakamura, T., Adachi, S. & Matsuishi, K. Improvement of laser processing for colloidal silicon nanocrystal formation in a reactive solvent. J. Phys. Chem. C. 121, 8623–8629 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Nakamura, T., Yuan, Z., Watanabe, K. & Adachi, S. Bright and multicolor luminescent colloidal Si nanocrystals prepared by pulsed laser irradiation in liquid. Appl. Phys. Lett. 108, 023105 (2016).

    Article 

    Google Scholar
     

  • 30.

    Saxena, N., Kumar, P., Agarwal, A. & Kanjilal, D. Lattice distortion in ion beam synthesized silicon nanocrystals in SiOx thin films. Phys. Status Solidi A 209, 283–288 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 31.

    Hua, F., Erogbogbo, F., Swihart, M. T. & Ruckenstein, E. Organically capped silicon nanoparticles with blue photoluminescence prepared by hydrosilylation followed by oxidation. Langmuir 22, 4363–4370 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Esteves, A. C. C. et al. Influence of cross-linker concentration on the cross-linking of PDMS and the network structures formed. Polymer 50, 3955–3966 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 33.

    Tsai, M.-L. et al. Efficiency enhancement of silicon heterojunction solar cells via photon management using graphene quantum dot as downconverters. Nano Lett. 16, 309–313 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 34.

    Chan, M. Y. & Lee, P. S. Fabrication of silicon nanocrystals and its room temperature luminescence effects. Int. J. Nanosci. 5, 565–570 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Sun, W. et al. Switching‐on quantum size effects in silicon nanocrystals. Adv. Mater. 27, 746–749 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 36.

    Mastronardi, M. L. et al. Size-dependent absolute quantum yields for size-separated colloidally-stable silicon nanocrystals. Nano Lett. 12, 337–342 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 37.

    Gupta, A., Swihart, M. T. & Wiggers, H. Luminescent colloidal dispersion of silicon quantum dots from microwave plasma synthesis: exploring the photoluminescence behavior across the visible spectrum. Adv. Funct. Mater. 19, 696–703 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 38.

    Wang, Q. et al. Energy-down-shift CsPbCl3:Mn quantum dots for boosting the efficiency and stability of perovskite solar cells. ACS Energy Lett. 2, 1479–1486 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 39.

    Wang, Y.-C. et al. Efficient and hysteresis-free perovskite solar cells based on a solution processable polar fullerene electron transport layer. Adv. Energy Mater. 7, 1701144 (2017).

    Article 

    Google Scholar
     

  • 40.

    Zhao, D. et al. High-efficiency solution-processed planar perovskite solar cells with a polymer hole transport layer. Adv. Energy Mater. 5, 1401855 (2015).

    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *