Rapid, precise, and reliable measurement of delay discounting using a Bayesian learning algorithm


  • 1.

    Reynolds, B., Ortengren, A., Richards, J. B. & de Wit, H. Dimensions of impulsive behavior: Personality and behavioral measures. Behav. Process. 40, 305–315 (2006).


    Google Scholar
     

  • 2.

    Meier, S. & Sprenger, C. Present-biased preferences and credit card borrowing. Am. Econ. J. Appl. Econ. 2, 193–210 (2010).


    Google Scholar
     

  • 3.

    Harris, A. C. & Madden, G. J. Delay discounting and performance on the Prisoner’s dilemma game. Psychol. Rec. 52, 429–440 (2002).


    Google Scholar
     

  • 4.

    Hirsh, J. B., Morisano, D. & Peterson, J. B. Delay discounting: Interactions between personality and cognitive ability. J. Res. Pers. 42, 1646–1650 (2008).


    Google Scholar
     

  • 5.

    Bickel, W. K., Yi, R., Landes, R. D., Hill, P. F. & Baxter, C. Remember the future: Working memory training decreases delay discounting among stimulant addicts. Biol. Psychiatry 69, 260–265 (2011).

    PubMed 

    Google Scholar
     

  • 6.

    Shamosh, N. A. & Gray, J. R. Delay discounting and intelligence: A meta-analysis. Intelligence 36, 289–305 (2008).


    Google Scholar
     

  • 7.

    Kable, J. W. & Glimcher, P. W. The neural correlates of subjective value during intertemporal choice. Nat. Neuro. 10, 1625–1633 (2007).

    CAS 

    Google Scholar
     

  • 8.

    McClure, S. M., Laibson, D. I., Loewenstein, G. & Cohen, J. D. Separate neural systems value immediate and delayed monetary rewards. Sci. New Ser. 306, 503–507 (2004).

    CAS 

    Google Scholar
     

  • 9.

    Anokhin, A. P., Grant, J. D., Mulligan, R. C. & Heath, A. C. The genetics of impulsivity: Evidence for the heritability of delay discounting. Biol. Psychiatry 77, 887–894 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Bickel, W. K. Discounting of delayed rewards as an endophenotype. Biol. Psychiatry 77, 846–847 (2015).

    PubMed 

    Google Scholar
     

  • 11.

    Green, L. & Myerson, J. A discounting framework for choice with delayed and probabilistic rewards. Psychol. Bull. 130, 769–792 (2004).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Anokhin, A. P., Golosheykin, S. & Mulligan, R. C. Long-term test–retest reliability of delayed reward discounting in adolescents. Behav. Process. 111, 55–59 (2020).


    Google Scholar
     

  • 13.

    Heerey, E. A., Robinson, B. M., McMahon, R. P. & Gold, J. M. Delay discounting in schizophrenia. Cognit. Neuropsychiatry 12, 213–221 (2007).


    Google Scholar
     

  • 14.

    Ahn, W.-Y. et al. Temporal discounting of rewards in patients with bipolar disorder and schizophrenia. J. Abnorm. Psychol. 120, 911–921 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Insel, T. R. The NIMH research domain criteria (RDoC) project: Precision medicine for psychiatry. Am. J. Psychiatry 171, 395–397 (2014).

    PubMed 

    Google Scholar
     

  • 16.

    Montague, P. R., Dolan, R. J., Friston, K. J. & Dayan, P. Computational psychiatry. Trends Cogn. Sci. 16, 72–80 (2012).

    PubMed 

    Google Scholar
     

  • 17.

    Stephan, K. E. & Mathys, C. Computational approaches to psychiatry. Curr. Opin. Neurobiol. 25, 85–92 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Hedge, C., Powell, G. & Sumner, P. The reliability paradox: Why robust cognitive tasks do not produce reliable individual differences. Behav. Res. 103, 1–21 (2017).


    Google Scholar
     

  • 19.

    Enkavi, A. Z. et al. Large-scale analysis of test–retest reliabilities of self-regulation measures. Proc. Natl. Acad. Sci. 116, 5472–5477 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Sandry, J., Genova, H. M., Dobryakova, E., DeLuca, J. & Wylie, G. Subjective cognitive fatigue in multiple sclerosis depends on task length. Front. Neurol. 5, 24 (2014).


    Google Scholar
     

  • 21.

    Kirby, K. N. & MarakoviĆ, N. N. Delay-discounting probabilistic rewards: Rates decrease as amounts increase. Psychon. Bull. Rev. 3, 100–104 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Kirby, K. N. One-year temporal stability of delay-discount rates. Psychon. Bull. Rev. 16, 457–462 (2009).

    PubMed 

    Google Scholar
     

  • 23.

    Koffarnus, M. N. & Bickel, W. K. A 5-trial adjusting delay discounting task: Accurate discount rates in less than one minute. Exp. Clin. Psychopharmacol. 22, 222–228 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Cavagnaro, D. R., Myung, J. I., Pitt, M. A. & Kujala, J. V. Adaptive design optimization: A mutual information-based approach to model discrimination in cognitive science. Neural Comput. 22, 887–905 (2010).

    MathSciNet 
    PubMed 
    MATH 

    Google Scholar
     

  • 25.

    Myung, J. I., Cavagnaro, D. R. & Pitt, M. A. A tutorial on adaptive design optimization. J. Math. Psychol. 57, 53–67 (2013).

    MathSciNet 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • 26.

    Atkinson, A. C. & Donev, A. N. Optimum experimental designs. El Observador de Estrellas Dobles 344, 2 (1992).

    MATH 

    Google Scholar
     

  • 27.

    Cohn, D., Atlas, L. & Ladner, R. Improving generalization with active learning. Mach. Learn. 15, 201–221 (1994).


    Google Scholar
     

  • 28.

    Myung, J. I. & Pitt, M. A. Optimal experimental design for model discrimination. Psych. Rev. 116, 499–518 (2009).


    Google Scholar
     

  • 29.

    Cavagnaro, D. R. et al. On the functional form of temporal discounting: An optimized adaptive test. J. Risk Uncertain. 52, 233–254 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Lesmes, L. A., Jeon, S.-T., Lu, Z.-L. & Dosher, B. A. Bayesian adaptive estimation of threshold versus contrast external noise functions: The quick TvC method. Vis. Res. 46, 3160–3176 (2006).

    PubMed 

    Google Scholar
     

  • 31.

    Gu, H. et al. A hierarchical Bayesian approach to adaptive vision testing: A case study with the contrast sensitivity function. J. Vis. 16, 15–15 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Aranovich, G. J., Cavagnaro, D. R., Pitt, M. A., Myung, J. I. & Mathews, C. A. A model-based analysis of decision making under risk in obsessive-compulsive and hoarding disorders. J. Psychiatr. Res. 90, 126–132 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Lewi, J., Butera, R. & Paninski, L. Sequential optimal design of neurophysiology experiments. Neural Comput. 21, 619–687 (2009).

    MathSciNet 
    PubMed 
    MATH 

    Google Scholar
     

  • 34.

    DiMattina, C. & Zhang, K. Active data collection for efficient estimation and comparison of nonlinear neural models. Neural Comput. 23, 2242–2288 (2011).

    MathSciNet 
    PubMed 
    MATH 

    Google Scholar
     

  • 35.

    Wathen, J. K. & Thall, P. F. Bayesian adaptive model selection for optimizing group sequential clinical trials. Statist. Med. 27, 5586–5604 (2008).

    MathSciNet 

    Google Scholar
     

  • 36.

    Kreutz, C. & Timmer, J. Systems biology: Experimental design. FEBS J. 276, 923–942 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Mazur, J. E. An adjusting procedure for studying delayed reinforcement. Commons ML Mazur JE Nevin JA 6, 55–73 (1987).


    Google Scholar
     

  • 38.

    Cavagnaro, D. R., Gonzalez, R., Myung, J. I. & Pitt, M. A. Optimal decision stimuli for risky choice experiments: an adaptive approach. Manag. Sci. 59, 358–375 (2013).


    Google Scholar
     

  • 39.

    Cavagnaro, D. R., Pitt, M. A., Gonzalez, R. & Myung, J. I. Discriminating among probability weighting functions using adaptive design optimization. J. Risk Uncertain. 47, 255–289 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Cavagnaro, D. R., Pitt, M. A. & Myung, J. I. Model discrimination through adaptive experimentation. Psychon. Bull. Rev. 18, 204–210 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Matusiewicz, A. K., Carter, A. E., Landes, R. D. & Yi, R. Statistical equivalence and test–retest reliability of delay and probability discounting using real and hypothetical rewards. Behav. Proc. 100, 116–122 (2013).


    Google Scholar
     

  • 42.

    Harrison, J. & McKay, R. Delay discounting rates are temporally stable in an equivalent present value procedure using theoretical and area under the curve analyses. Psychol. Rec. 62, 307–320 (2012).


    Google Scholar
     

  • 43.

    Weatherly, J. N. & Derenne, A. Testing the reliability of paper-pencil versions of the fill-in-the-blank and multiple-choice methods of measuring probability discounting for seven different outcomes. Psychol. Rec. 63, 835–862 (2013).


    Google Scholar
     

  • 44.

    Lin, L.I.-K. A concordance correlation coefficient to evaluate reproducibility. Biometrics 45, 255 (1989).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • 45.

    Moutoussis, M., Dolan, R. J. & Dayan, P. How people use social information to find out what to want in the paradigmatic case of inter-temporal preferences. PLoS Comput. Biol. 12, e1004965 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Hou, F. et al. Evaluating the performance of the quick CSF method in detecting contrast sensitivity function changes. J. Vis. 16, 18–18 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Ahn, W.-Y. & Busemeyer, J. R. Challenges and promises for translating computational tools into clinical practice. Curr. Opin. Behav. Sci. 11, 1–7 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Gelman, A., Dunson, D. B. & Vehtari, A. Bayesian Data Analysis (CRC Press, Boca Raton, 2014).


    Google Scholar
     

  • 49.

    Levy, I., Snell, J., Nelson, A. J., Rustichini, A. & Glimcher, P. W. Neural representation of subjective value under risk and ambiguity. J. Neurophysiol. 103, 1036–1047 (2010).

    PubMed 

    Google Scholar
     

  • 50.

    Xiang, T., Lohrenz, T. & Montague, P. R. Computational substrates of norms and their violations during social exchange. J. Neurosci. 33, 1099–1108 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Bahg, G. et al. Real-time Adaptive Design Optimization within Functional MRI Experiments. Computational Brain & Behavior https://doi.org/10.1007/s42113-020-00079-7 (2020).

    Article 

    Google Scholar
     

  • 52.

    Yang, J., Ahn, W.-Y., Pitt, M. A. & Myung, J. I. ADOpy: a Python package for optimizing data collection (in press). Behav. Res. Methods

  • 53.

    Signorell A. et al. DescTools: Tools for Descriptive Statistics. R package version 0.99.34 (2020). https://cran.r-project.org/package=DescTools.

  • 54.

    Ahn, W.-Y., Haines, N. & Zhang, L. Revealing neurocomputational mechanisms of reinforcement learning and decision-making with the hBayesDM package. Computat. Psychiatry 1, 24–57 (2017).


    Google Scholar
     

  • 55.

    Carpenter, B. et al. Stan: A probabilistic programming language. J. Stat. Softw. 76, 25704 (2016).


    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *