Realistic modelling of information spread using peer-to-peer diffusion patterns


  • 1.

    Watts, D. J. & Dodds, P. S. Influentials, networks, and public opinion formation. J. Consum. Res. 34, 441–458 (2007).


    Google Scholar
     

  • 2.

    Rogers, E. M. Diffusion of Innovations (Simon and Schuster, 2010).

  • 3.

    Leskovec, J., Adamic, L. A. & Huberman, B. A. The dynamics of viral marketing. ACM Trans. Web 1, 5 (2007).


    Google Scholar
     

  • 4.

    Centola, D. The spread of behavior in an online social network experiment. Science 329, 1194–1197 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Aral, S. & Walker, D. Creating social contagion through viral product design: a randomized trial of peer influence in networks. Manag. Sci. 57, 1623–1639 (2011).


    Google Scholar
     

  • 6.

    Newman, M., Barabási, A. L. & Watts, D. J. The Structure and Dynamics of Networks (Princeton Univ. Press, 2011).

  • 7.

    Vosoughi, S., Roy, D. & Aral, S. The spread of true and false news online. Science 359, 1146–1151 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Iribarren, J. L. & Moro, E. Impact of human activity patterns on the dynamics of information diffusion. Phys. Rev. Lett. 103, 038702 (2009).

    PubMed 

    Google Scholar
     

  • 9.

    Salganik, M. J., Dodds, P. S. & Watts, D. J. Experimental study of inequality and unpredictability in an artificial cultural market. Science 311, 854–856 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Aral, S., Muchnik, L. & Sundararajan, A. Engineering social contagions: optimal network seeding in the presence of homophily. Netw. Sci. 1, 125–153 (2013).


    Google Scholar
     

  • 11.

    Aral, S. & Walker, D. Identifying influential and susceptible members of social networks. Science 337, 337–341 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Kwak, H., Lee, C., Park, H. & Moon, S. What is Twitter, a social network or a news media? In Proc. 19th International Conference on World Wide Web 591–600 (ACM, 2010).

  • 13.

    Gruhl, D., Guha, R., Liben-Nowell, D. & Tomkins, A. Information diffusion through blogspace. In Proc. 13th International Conference on World Wide Web 491–501 (ACM, 2004).

  • 14.

    Liben-Nowell, D. & Kleinberg, J. Tracing information flow on a global scale using Internet chain-letter data. Proc. Natl Acad. Sci. USA 105, 4633–4638 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Goel, S., Anderson, A., Hofman, J. & Watts, D. J. The structural virality of online diffusion. Manag. Sci. 62, 180–196 (2015).


    Google Scholar
     

  • 16.

    Goel, S., Watts, D. J. & Goldstein, D. G. The structure of online diffusion networks. In Proc. 13th ACM Conference on Electronic Commerce 623–638 (ACM, 2012).

  • 17.

    Pei, S., Muchnik, L., Tang, S., Zheng, Z. & Makse, H. A. Exploring the complex pattern of information spreading in online blog communities. PLoS ONE 10, e0126894 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Muchnik, L., Aral, S. & Taylor, S. J. Social influence bias: a randomized experiment. Science 341, 647–651 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Bapna, R., Ramaprasad, J., Shmueli, G. & Umyarov, A. One-way mirrors in online dating: a randomized field experiment. Manag. Sci. 62, 3100–3122 (2016).


    Google Scholar
     

  • 20.

    Eckles, D., Kizilcec, R. F. & Bakshy, E. Estimating peer effects in networks with peer encouragement designs. Proc. Natl Acad. Sci. USA 113, 7316–7322 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Centola, D. An experimental study of homophily in the adoption of health behavior. Science 334, 1269–1272 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Goldenberg, J., Libai, B. & Muller, E. Talk of the network: a complex systems look at the underlying process of word-of-mouth. Mark. Lett. 12, 211–223 (2001).


    Google Scholar
     

  • 23.

    Watts, D. J. A simple model of global cascades on random networks. Proc. Natl Acad. Sci. USA 99, 5766–5771 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Castellano, C., Fortunato, S. & Loreto, V. Statistical physics of social dynamics. Rev. Mod. Phys. 81, 591 (2009).


    Google Scholar
     

  • 25.

    Zhang, Z. K. et al. Dynamics of information diffusion and its applications on complex networks. Phys. Rep. 651, 1–34 (2016).


    Google Scholar
     

  • 26.

    Pei, S. & Makse, H. A. Spreading dynamics in complex networks. J. Stat. Mech. 2013, P12002 (2013).


    Google Scholar
     

  • 27.

    Domingos, P. & Richardson, M. Mining the network value of customers. In Proc. 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 57–66 (ACM, 2001).

  • 28.

    Kempe, D., Kleinberg, J. & Tardos, É. Maximizing the spread of influence through a social network. In Proc. 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 137–146 (ACM, 2003).

  • 29.

    Kitsak, M. et al. Identification of influential spreaders in complex networks. Nat. Phys. 6, 888–893 (2010).

    CAS 

    Google Scholar
     

  • 30.

    Lü, L. et al. Vital nodes identification in complex networks. Phys. Rep. 650, 1–63 (2016).


    Google Scholar
     

  • 31.

    Hu, Y. et al. Local structure can identify and quantify influential global spreaders in large scale social networks. Proc. Natl Acad. Sci. USA 115, 7468–7472 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Aral, S. & Dhillon, P. S. Social influence maximization under empirical influence models. Nat. Hum. Behav. 2, 375 (2018).

    PubMed 

    Google Scholar
     

  • 33.

    Pei, S., Wang, J., Morone, F. & Makse, H. A. Influencer identification in dynamical complex systems. J. Complex Netw. 8, cnz029 (2020).

  • 34.

    Moreno, Y., Nekovee, M. & Pacheco, A. F. Dynamics of rumor spreading in complex networks. Phys. Rev. E 69, 066130 (2004).


    Google Scholar
     

  • 35.

    Kermack, W. O. & McKendrick, A. G. A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. A. 115, 700–721 (1927).


    Google Scholar
     

  • 36.

    Pastor-Satorras, R., Castellano, C., Van Mieghem, P. & Vespignani, A. Epidemic processes in complex networks. Rev. Mod. Phys. 87, 925 (2015).


    Google Scholar
     

  • 37.

    Iribarren, J. L. & Moro, E. Branching dynamics of viral information spreading. Phys. Rev. E 84, 046116 (2011).


    Google Scholar
     

  • 38.

    Centola, D. & Macy, M. Complex contagions and the weakness of long ties. Am. J. Sociol. 113, 702–734 (2007).


    Google Scholar
     

  • 39.

    De Domenico, M., Lima, A., Mougel, P. & Musolesi, M. The anatomy of a scientific rumor. Sci. Rep. 3, 2980 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Stephen, A. T., Dover, Y., Muchnik, L. & Goldenberg, J. Pump it out! The effect of transmitter activity on content propagation in social media. Saïd Business School WP https://doi.org/10.2139/ssrn.2897582 (2017).

  • 41.

    Rodriguez, M. G., Gummadi, K. & Schoelkopf, B. Quantifying information overload in social media and its impact on social contagions. In Proc. 8th International AAAI Conference on Weblogs and Social Media 170–179 (AAAI, 2014).

  • 42.

    Weng, L., Flammini, A., Vespignani, A. & Menczer, F. Competition among memes in a world with limited attention. Sci. Rep. 2, 335 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Gleeson, J. P., Ward, J. A., O’Sullivan, K. P. & Lee, W. T. Competition-induced criticality in a model of meme popularity. Phys. Rev. Lett. 112, 048701 (2014).

    PubMed 

    Google Scholar
     

  • 44.

    Feng, L. et al. Competing for attention in social media under information overload conditions. PLoS ONE 10, e0126090 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Hodas, N. O. & Lerman, K. How visibility and divided attention constrain social contagion. In Proc. 2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Conference on Social Computing 249–257 (IEEE, 2012).

  • 46.

    Lerman, K. Information is not a virus, and other consequences of human cognitive limits. Future Internet 8, 21 (2016).


    Google Scholar
     

  • 47.

    Muchnik, L. et al. Origins of power-law degree distribution in the heterogeneity of human activity in social networks. Sci. Rep. 3, 1783 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Barabási, A. L. The origin of bursts and heavy tails in human dynamics. Nature 435, 207–211 (2005).

    PubMed 

    Google Scholar
     

  • 49.

    Akbarpour, M. & Jackson, M. O. Diffusion in networks and the virtue of burstiness. Proc. Natl Acad. Sci. USA 115, E6996–E7004 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Goldenberg, J., Han, S., Lehmann, D. R. & Hong, J. W. The role of hubs in the adoption process. J. Mark. 73, 1–13 (2009).


    Google Scholar
     

  • 51.

    Mønsted, B., Sapieżyński, P., Ferrara, E. & Lehmann, S. Evidence of complex contagion of information in social media: an experiment using Twitter bots. PLoS ONE 12, e0184148 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Weng, L., Menczer, F. & Ahn, Y. Y. Virality prediction and community structure in social networks. Sci. Rep. 3, 2522 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Cheng, J., Adamic, L., Dow, P. A., Kleinberg, J. M. & Leskovec, J. Can cascades be predicted? In Proc. 23rd International Conference on World Wide Web 925–936 (ACM, 2014).

  • 54.

    Pei, S., Muchnik, L., Andrade, J. S. Jr, Zheng, Z. & Makse, H. A. Searching for superspreaders of information in real-world social media. Sci. Rep. 4, 5547 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Efron, B. & Tibshirani, R. J. An Introduction to the Bootstrap (CRC Press, 1994).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *