Rewetting strategies to reduce nitrous oxide emissions from European peatlands


  • 1.

    IPCC. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC, Wetlands, 2014).

  • 2.

    Smith, P. et al. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Edenhofer, O. et al.) (Cambridge University Press, Cambridge, UK, 2014).

  • 3.

    IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, Geneva, Switzerland, 2014).

  • 4.

    Ravishankara, A. R., Daniel, J. S. & Portmann, R. W. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326, 123–125 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Baumert, K., Herzog, T. & Pershing, J. Navigating the Numbers: Greenhouse Gas Data and International Climate Policy (World Resources Institute, Washington, DC, 2005).

  • 6.

    Oktarita, S., Hergoualch, K., Anwar, S. & Verchot, L. V. Substantial N2O emissions from peat decomposition and N fertilization in an oil palm plantation exacerbated by hotspots. Environ. Res. Lett. 12, 104007 (2017).

    Article 

    Google Scholar
     

  • 7.

    Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W. & Hunt, S. J. Global peatland dynamics since the last glacial maximum. Geophys. Res. Lett. 37, L13402 (2010).


    Google Scholar
     

  • 8.

    Leifeld, J. & Menichetti, L. The underappreciated potential of peatlands in global climate change mitigation strategies. Nat. Commun. 9, 1071 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Limpens, J., Heijmans, M. M. P. D. & Berendse, F. In Boreal Peatland Ecosystems (eds Wieder, R. K. & Vitt, D. H.) 195 (Springer, Berlin, 2006).

  • 10.

    Joosten, H., Tapio-Biström, M. L. & Tol, S. Peatlands—Guidance for Climate Change Mitigation Through Conservation, Rehabilitation and Sustainable use 2nd edn (FAO & Wetlands International Landscape, ICIMOD, Kathmandu, 2012).

  • 11.

    Green, S. M. & Page, S. Tropical peatlands: current plight and the need for responsible management. Geol. Today 33, 174–179 (2017).

    Article 

    Google Scholar
     

  • 12.

    Moore, T. R. & Clarkson, B. R. Dissolved organic carbon in New Zealand peatlands. NZ J. Mar. Freshw. Res. 41, 137–141 (2007).

  • 13.

    Renou-Wilson, F., Barry, C., Müller, C. & Wilson, D. The impacts of drainage, nutrient status and management practice on the full carbon balance of grasslands on organic soils in a maritime temperate zone. Biogeosciences 11, 4361–4379 (2014).

    Article 

    Google Scholar
     

  • 14.

    Martikainen, P. J., Nykänen, H., Crill, P. & Silvola, J. Effect of a lowered water table on nitrous oxide fluxes from northern peatlands. Nature 366, 51–53 (1993).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Wrage-Mönnig, N. et al. Role of nitrifier denitrification in the production of nitrous oxide revisited. Soil Biol. Biochem. 123, A3–A16 (2018).

    Article 

    Google Scholar
     

  • 16.

    Pärn, J. et al. Nitrogen-rich organic soils under warm well-drained conditions are global nitrous oxide emission hotspots. Nat. Commun. 9, 1135 (2018).

    Article 

    Google Scholar
     

  • 17.

    Repo, M. E. et al. Large N2O emissions from cryoturbated peat soil in tundra. Nat. Geosci. 2, 189–192 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Klemedtsson, L., Von Arnold, K., Weslien, P. & Gundersen, P. Soil C/N ratio as a scalar parameter to predict nitrous oxide emissions. Global Change Biol. 11, 1142–1147 (2005).

    Article 

    Google Scholar
     

  • 19.

    Leppelt, T. et al. Nitrous oxide emission budgets and land-use-driven hotspots for organic soils in Europe. Biogeosciences 11, 6595–6612 (2014).

    Article 

    Google Scholar
     

  • 20.

    Petersen, S. O. et al. Annual emissions of CH4 and N2O, and ecosystem respiration, from eight organic soils in western Denmark managed by agriculture. Biogeosciences 9, 403–422 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Leifeld, J. Distribution of nitrous oxide emissions from managed organic soils under different land uses estimated by the peat C/N ratio to improve national GHG inventories. Sci. Total Environ. 631–632, 23–26 (2018).

    Article 

    Google Scholar
     

  • 22.

    van Beek, C. L. et al. Emissions of N2O from fertilized and grazed grassland on organic soil in relation to groundwater level. Nutr. Cycling Agroecosyst. 86, 331–340 (2010).

    Article 

    Google Scholar
     

  • 23.

    Maljanen, M. et al. Afforestation does not necessarily reduce nitrous oxide emissions from managed boreal peat soils. Biogeochemistry 108, 199–218 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 24.

    Liimatainen, M. et al. Factors controlling nitrous oxide emissions from managed northern peat soils with low carbon to nitrogen ratio. Soil Biol. Biochem. 122, 186–195 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Säurich, A., Tiemeyer, B., Dettmann, U. & Don, A. How do sand addition, soil moisture and nutrient status influence greenhouse gas fluxes from drained organic soils? Soil Biol. Biochem. 135, 71–84 (2019).

    Article 

    Google Scholar
     

  • 26.

    Laine, J. et al. Effect of water-level drawdown on global climatic warming: northern peatlands. Ambio 25, 179–184 (1996).


    Google Scholar
     

  • 27.

    Laudone, G. M. et al. A model to predict the effects of soil structure on denitrification and N2O emission. J. Hydrol. 409, 283–290 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Wu, L. et al. Simulation of nitrous oxide emissions at field scale using the SPACSYS model. Sci. Total Environ. 530–531, 76–86 (2015).

    Article 

    Google Scholar
     

  • 29.

    Couwenberg, J. et al. Assessing greenhouse gas emissions from peatlands using vegetation as a proxy. Hydrobiologia 674, 67–89 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Liu, H., Zak, D., Rezanezhad, F. & Lennartz, B. Soil degradation determines release of nitrous oxide and dissolved organic carbon from peatlands. Environ. Res. Lett. 14, 094009 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 31.

    Tanneberger, F., Joosten, H., Moen, A. & Whinam, J. In Mires and Peatlands of Europe—Status, Distribution and Conservation (eds Joosten, H., Tanneberger, F. & Moen, A.) 173–196 (Schweizerbart Science Publishers, Stuttgart, 2017).

  • 32.

    Renou-Wilson, F. et al. Rewetting degraded peatlands for climate and biodiversity benefits: results from two raised bogs. Ecol. Eng. 127, 547–560 (2019).

    Article 

    Google Scholar
     

  • 33.

    Lamers, L. P. M. et al. Ecological restoration of rich fens in Europe and North America: From trial and error to an evidence-based approach. Biol. Rev. Camb. Philos. Soc. 90, 182–203 (2015).

    Article 

    Google Scholar
     

  • 34.

    Tiemeyer et al. A new methodology for organic soils in national greenhouse gas inventories: Data synthesis, derivation and application. Ecol. Indic. 109, 105838 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Wilson et al. Multiyear greenhouse gas balances at a rewetted temperate peatland. Glob. Change Biol. 22, 4080–4095 (2016).

    Article 

    Google Scholar
     

  • 36.

    Evans, C. et al. Implementation of an Emission Inventory for UK Peatlands. Report to the Department for Business, Energy and Industrial Strategy, Centre for Ecology and Hydrology, Bangor. 88 (2017).

  • 37.

    Günther, A. et al. Prompt rewetting of drained peatlands reduces climate warming despite methane emissions. Nat. Commun. 11, 1644 (2020).

    Article 

    Google Scholar
     

  • 38.

    Nykänen, H., Alm, J., Lång, K., Silvola, J. & Martikainen, P. J. Emissions of CH4, N2O and CO2 from a virgin fen and a fen drained for grassland in Finland. J. Biogeogr. 22, 351–357 (1995).

    Article 

    Google Scholar
     

  • 39.

    Drösler, M. et al. Klimaschutz furch Moorschutz in der Praxis (Thünen-Institut fur Agrarklimaschutz, Brauschweig, Germany, 2013).

  • 40.

    Mojeremane, W., Rees, R. M. & Mencuccini, M. The effects of site preparation practices on carbon dioxide, methane and nitrous oxide fluxes from a peaty gley soil. Forestry 85, 1–15 (2012).

    Article 

    Google Scholar
     

  • 41.

    Pronger, J., Schipper, L. A., Hill, R. B., Campbell, D. I. & McLeod, M. Subsidence rates of drained agricultural peatlands in New Zealand and the relationship with time since drainage. J. Environ. Qual. 43, 1442 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 42.

    Hume, N. P., Fleming, M. S. & Horne, A. J. Plant carbohydrate limitation on nitrate reduction in wetland microcosms. Water Res. 36, 577–584 (2002).

    CAS 
    Article 

    Google Scholar
     

  • 43.

    Höper, H. et al. In Peatlands and Climate Change (ed. Strack, M.) 182–210 (International Peat Society, Jyväskylä, Finland, 2008).

  • 44.

    Davidson, E. A. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nat. Geosci. 2, 659–662 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 45.

    Tiemeyer, B. et al. High emissions of greenhouse gases from grasslands on peat and other organic soils. Global Change Biol. 22, 4134–4149 (2016).

    Article 

    Google Scholar
     

  • 46.

    Andersen, R. et al. An overview of the progress and challenges of peatland restoration in Western Europe. Restor. Ecol. 25, 271–282 (2016).

    Article 

    Google Scholar
     

  • 47.

    Lugato, E., Paniagua, L., Jones, A., de Vries, W. & Leip, A. Complementing the topsoil information of the Land Use/Land Cover Area Frame Survey (LUCAS) with modelled N2O emissions. PLoS ONE 12, e0176111 (2017).

    Article 

    Google Scholar
     

  • 48.

    Xu, J., Morrisa, P. J., Liu, J. & Holden, J. PEATMAP: Refining estimates of global peatland distribution based on a meta-analysis. Catena 160, 134–140 (2018).

    Article 

    Google Scholar
     

  • 49.

    Pflugmacher, D., Rabe, A., Peters, M. & Hostert, P. Mapping pan-European land cover using Landsat spectral-temporal metrics and the European LUCAS survey. Remote Sens. Environ. 221, 583–595 (2019).

    Article 

    Google Scholar
     

  • 50.

    Hierderer, R. EFSA Spatial Data Version 1.1, Data Properties and Processing (Publication Office of the European Union, Luxembourg, 2012).

  • 51.

    Jones, R. J., Hiederer, R., Rusco, E. & Montanarella, L. Estimating organic carbon in the soils of Europe for policy support. Eur. J. Soil Sci. 56, 655–671 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 52.

    Joosten, H., Tannenberger, F. & Moen, A. Mires and Peatlands of Europe (Schweizerbart Science Publishers, Stuttgart, Germany, 2017).

  • 53.

    Liu, H., Price, J. S., Rezanezhad, F. & Lennartz, B. Century-scale shifts in peat hydro-physical properties as induced by drainage Water Resource Research (2020).

  • 54.

    Figueres, C. et al. Three years to safeguard our climate. Nature 546, 593–595 (2017).

    CAS 
    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *