Robustness and rich clubs in collaborative learning groups: a learning analytics study using network science


  • 1.

    Jeong, H. & Hmelo-Silver, C. E. Seven affordances of computer-supported collaborative learning: How to support collaborative learning? How can technologies help?. Educ. Psychol. 51, 247–265 (2016).


    Google Scholar
     

  • 2.

    Dillenbourg, P. What do you mean by collaborative leraning? In Collaborative Learning: Cognitive and Computational Approaches (ed. Dillenbourg, P.) 1–19 (Elsevier, Oxford, 1999).


    Google Scholar
     

  • 3.

    Näykki, P., Järvelä, S., Kirschner, P. A. & Järvenoja, H. Socio-emotional conflict in collaborative learning-A process-oriented case study in a higher education context. Int. J. Educ. Res. 68, 1–14 (2014).


    Google Scholar
     

  • 4.

    Stahl, G., Koschmann, T. & Suthers, D. Computer-supported collaborative learning: An historical perspective. Camb. Handb. Learn. Sci. https://doi.org/10.1145/1124772.1124855 (2014).

    Article 

    Google Scholar
     

  • 5.

    Prichard, J. S., Bizo, L. A. & Stratford, R. J. The educational impact of team-skills training: Preparing students to work in groups. Br. J. Educ. Psychol. 76, 119–140 (2006).

    PubMed 

    Google Scholar
     

  • 6.

    Seitamaa-Hakkarainen, P., Viilo, M. & Hakkarainen, K. Learning by collaborative designing: technology-enhanced knowledge practices. Int. J. Technol. Des. Educ. 20, 109–136 (2010).


    Google Scholar
     

  • 7.

    Damşa, C. I. The multi-layered nature of small-group learning: Productive interactions in object-oriented collaboration. Int. J. Comput. Collab. Learn. 9, 247–281 (2014).


    Google Scholar
     

  • 8.

    Kreijns, K., Kirschner, P. A. & Jochems, W. Identifying the pitfalls for social interaction in computer-supported collaborative learning environments: A review of the research. Comput. Hum. Behav. 19, 335–353 (2003).


    Google Scholar
     

  • 9.

    Curşeu, P. L., Janssen, S. E. A. & Raab, J. Connecting the dots: Social network structure, conflict, and group cognitive complexity. High. Educ. 63, 621–629 (2012).


    Google Scholar
     

  • 10.

    Cela, K. L., Sicilia, M. Á & Sánchez, S. Social network analysis in E-learning environments: A preliminary systematic review. Educ. Psychol. Rev. 27, 219–246 (2014).


    Google Scholar
     

  • 11.

    Dado, M. & Bodemer, D. A review of methodological applications of social network analysis in computer-supported collaborative learning. Educ. Res. Rev. 22, 159–180 (2017).


    Google Scholar
     

  • 12.

    Haya, P. A., Daems, O., Malzahn, N., Castellanos, J. & Hoppe, H. U. Analysing content and patterns of interaction for improving the learning design of networked learning environments. Br. J. Educ. Technol. 46, 300–316 (2015).


    Google Scholar
     

  • 13.

    Saqr, M., Fors, U., Tedre, M. & Nouri, J. How social network analysis can be used to monitor online collaborative learning and guide an informed intervention. PLoS ONE 13, 1–22 (2018).


    Google Scholar
     

  • 14.

    Kovanovic, V., Joksimovic, S., Gašević, D. & Hatala, M. What is the source of social capital? The association between social network position and social presence in communities of inquiry. Proc. Work. Graph-based Educ. Data Min. Educ. Data Min. Conf. 1183, 1–8 (2014).


    Google Scholar
     

  • 15.

    Saqr, M., Nouri, J. & Jormanainen, I. A Learning Analytics Study of the Effect of Group Size on Social Dynamics and Performance in Online Collaborative Learning. in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (eds. Scheffel, M., Broisin, J., Pammer-Schindler, V., Ioannou, A. & Schneider, J.) 11722 LNCS, 466–479 (Springer International Publishing, 2019).

  • 16.

    Saqr, M. A literature review of empirical research on learning analytics in medical education. Int. J. Health Sci. (Qassim.) 12, 80 (2018).


    Google Scholar
     

  • 17.

    Saqr, M., Nouri, J., Fors, U., Nouri, J. & Fors, U. Time to focus on the temporal dimension of learning: A learning analytics study of the temporal patterns of students’ interactions and self-regulation. Int. J. Technol. Enhanc. Learn. 11, 398 (2019).


    Google Scholar
     

  • 18.

    Callaway, D. S., Newman, M. E. J., Strogatz, S. H. & Watts, D. J. Network robustness and fragility: Percolation on random graphs. Phys. Rev. Lett. 85, 5468–5471 (2000).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Tanizawa, T., Paul, G., Cohen, R., Havlin, S. & Stanley, H. E. Optimization of network robustness to waves of targeted and random attacks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 71, 3–6 (2005).


    Google Scholar
     

  • 20.

    Iyer, S., Killingback, T., Sundaram, B. & Wang, Z. Attack robustness and centrality of complex networks. PLoS ONE https://doi.org/10.1371/journal.pone.0059613 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Barabási, A.-L. Network robustness. Netw. Sci. https://doi.org/10.1098/rsta.2012.0375 (2015).

    Article 

    Google Scholar
     

  • 22.

    Borgatti, S. P., Mahra, A., Brass, D. J. & Labianca, G. Network analysis in the social sciences. Science 323, 892–895 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Burt, R. S., Kilduff, M. & Tasselli, S. Social network analysis: Foundations and frontiers on advantage. Annu. Rev. Psychol. 64, 527–547 (2013).

    PubMed 

    Google Scholar
     

  • 24.

    Otte, E. & Ronald, R. SNA A powerful strategy also for the information sciences. J. Inf. Sci. 28, 441–453 (2002).


    Google Scholar
     

  • 25.

    Strogatz, S. H. Exploring complex networks. Nature 410, 268–276 (2001).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • 26.

    Estrada, E., Fox, M., Higham, D. J. & Oppo, G. L. Network science: Complexity in nature and technology. Netw. Sci. Complex. Nat. Technol. https://doi.org/10.1007/978-1-84996-396-1 (2010).

    ADS 
    Article 
    MATH 

    Google Scholar
     

  • 27.

    Schunk, D. H. Social cognitive theory and self-regulated learning. In Self-regulated Learning and Academic Achievement (eds Zimmerman, B. & Schunk, D. H.) 83–110 (Springer, New York, 1989).


    Google Scholar
     

  • 28.

    John-Steiner, V. & Mahn, H. Sociocultural approaches to learning and development: A Vygotskian framework. Educ. Psychol. 31, 191–206 (1996).


    Google Scholar
     

  • 29.

    Stahl, G. Group cognition in computer-assisted collaborative learning. J. Comput. Assist. Learn. 21, 79–90 (2005).


    Google Scholar
     

  • 30.

    Garrison, D. R. Online community of inquiry review: Social, cognitive, and teaching presence issues. J. Asynchronous Learn. Netw. 11, 61–72 (2007).


    Google Scholar
     

  • 31.

    Lin, N. Building a network theory of social capital. Connections 22, 28–51 (1999).


    Google Scholar
     

  • 32.

    Siemens, G. Connectivism: A learning theory for the digital age. Int. J. Instrum. Technol. Distance Learn. 1, 1–8 (2014).

    ADS 

    Google Scholar
     

  • 33.

    Järvelä, S. et al. Enhancing socially shared regulation in collaborative learning groups: Designing for CSCL regulation tools. Educ. Technol. Res. Dev. 63, 125–142 (2014).


    Google Scholar
     

  • 34.

    Chen, J., Wang, M., Kirschner, P. A. & Tsai, C. C. The role of collaboration, computer use, learning environments, and supporting strategies in CSCL: A meta-analysis. Rev. Educ. Res. 88, 799–843 (2018).


    Google Scholar
     

  • 35.

    Bernard, R. M. et al. A meta-analysis of three types of interaction treatments in distance education. Rev. Educ. Res. 79, 1243–1289 (2009).


    Google Scholar
     

  • 36.

    Borokhovski, E., Bernard, R. M., Tamim, R. M., Schmid, R. F. & Sokolovskaya, A. Technology-supported student interaction in post-secondary education: A meta-analysis of designed versus contextual treatments. Comput. Educ. 96, 15–28 (2016).


    Google Scholar
     

  • 37.

    Wecker, C. & Fischer, F. Where is the evidence? A meta-analysis on the role of argumentation for the acquisition of domain-specific knowledge in computer-supported collaborative learning. Comput. Educ. 75, 218–228 (2014).


    Google Scholar
     

  • 38.

    Weinberger, A. & Fischer, F. A framework to analyze argumentative knowledge construction in computer-supported collaborative learning. Comput. Educ. 46, 71–95 (2006).


    Google Scholar
     

  • 39.

    Kreijns, K., Kirschner, P. A. & Vermeulen, M. Social aspects of CSCL environments: A research framework. Educ. Psychol. 48, 229–242 (2013).


    Google Scholar
     

  • 40.

    Saqr, M. & Alamro, A. The role of social network analysis as a learning analytics tool in online problem based learning. BMC Med. Educ. 19, 1–11 (2019).


    Google Scholar
     

  • 41.

    Saqr, M., Fors, U. & Nouri, J. Using social network analysis to understand online problem-based learning and predict performance. PLoS ONE 13, e0203590 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Hernández-García, Á, González-González, I., Jiménez-Zarco, A. I. & Chaparro-Peláez, J. Applying social learning analytics to message boards in online distance learning: A case study. Comput. Hum. Behav. 47, 68–80 (2015).


    Google Scholar
     

  • 43.

    Hong, H.-Y., Scardamalia, M. & Zhang, J. Knowledge society network: Toward a dynamic, sustained network for building knowledge. Can. J. Learn. Technol. Rev. https://doi.org/10.21432/T2MG6P (2010).

    Article 

    Google Scholar
     

  • 44.

    Liu, Z., Kang, L., Su, Z., Liu, S. & Sun, J. Investigate the relationship between learners’ social characteristics and academic achievements. in Journal of Physics: Conference Series, Vol. 1113, (Institute of Physics Publishing, 2018).

  • 45.

    Liao, H., Mariani, M. S., Medo, M., Zhang, Y. C. & Zhou, M. Y. Ranking in evolving complex networks. Phys. Rep. 689, 1–54 (2017).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • 46.

    Lü, L. et al. Vital nodes identification in complex networks. Phys. Rep. 650, 1–63 (2016).

    ADS 
    MathSciNet 

    Google Scholar
     

  • 47.

    Mennin, S. Small-group problem-based learning as a complex adaptive system. Teach. Teach. Educ. 23, 303–313 (2007).


    Google Scholar
     

  • 48.

    Malmberg, J., Järvelä, S., Järvenoja, H. & Panadero, E. Promoting socially shared regulation of learning in CSCL: Progress of socially shared regulation among high- and low-performing groups. Comput. Hum. Behav. 52, 562–572 (2015).


    Google Scholar
     

  • 49.

    Rogers, E. M., Medina, U. E., Rivera, M. A. & Wiley, C. J. Complex adaptative systems and the diffusion of innovations. Innov. J. Public Sect. Innov. J. 10, 1–26 (2005).


    Google Scholar
     

  • 50.

    Borgatti, S. P. & Everett, M. G. Models of corerperiphery structures. Soc. Netw. 21, 375–395 (2000).


    Google Scholar
     

  • 51.

    Zhou, S. & Mondragón, R. J. The rich-club phenomenon in the internet topology. IEEE Commun. Lett. 8, 180–182 (2004).


    Google Scholar
     

  • 52.

    Colizza, V., Flammini, A., Serrano, M. A. & Vespignani, A. Detecting rich-club ordering in complex networks. Nat. Phys. 2, 110–115 (2006).

    CAS 

    Google Scholar
     

  • 53.

    Ma, A., Mondragón, R. J. & Latora, V. Anatomy of funded research in science. Proc. Natl. Acad. Sci. U.S.A. 112, 14760–14765 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Vaquero, L. M. & Cebrian, M. The rich club phenomenon in the classroom. Sci. Rep. 3, 1174 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJ. Compl. Syst. 1695, 1 (2006).


    Google Scholar
     

  • 56.

    Fruchterman, T. M. J. & Reingold, E. M. Graph drawing by force-directed placement. Softw. Pract. Exp. 21, 1129–1164 (1991).


    Google Scholar
     

  • 57.

    Bastian, M., Heymann, S. & Jacomy, M. Gephi: an open source software for exploring and manipulating networks. in Third International AAAI Conference on Weblogs and Social Media (2009).

  • 58.

    Borgatti, S. P. & Halgin, D. S. On network theory. Organ. Sci. 22, 1168–1181 (2011).


    Google Scholar
     

  • 59.

    Boldi, P., Rosa, M. & Vigna, S. Robustness of social networks: Comparative results based on distance distributions. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 6984, 8–21 (2011).

  • 60.

    Gunasekara, R. C., Mehrotra, K. & Mohan, C. K. Robustness Measures for Social Networks. 3–9 (2012).

  • 61.

    Ellens, W. & Kooij, R. E. Graph measures and network robustness. (2013).

  • 62.

    Salter-Townshend, M., White, A., Gollini, I. & Murphy, T. B. Review of statistical network analysis: Models, algorithms, and software. Stat. Anal. Data Min. 5, 243–264 (2012).

    MathSciNet 

    Google Scholar
     

  • 63.

    Borgatti, S. P. & Everett, M. G. A graph-theoretic perspective on centrality. Soc. Netw. 28, 466–484 (2006).


    Google Scholar
     

  • 64.

    Musiał, K., Kazienko, P. & Bródka, P. User position measures in social networks. 3rd SNA-KDD Work. 09, 1–9 (2009). https://doi.org/10.1145/1731011.1731017

  • 65.

    Block, P. Reciprocity, transitivity, and the mysterious. Soc. Netw. 40, 163–173 (2015).


    Google Scholar
     

  • 66.

    Ergün, E. & Usluel, Y. K. An analysis of density and degree-centrality according to the social networking structure formed in an online learning environment. Educ. Technol. Soc. 19, 34–46 (2016).


    Google Scholar
     

  • 67.

    Latora, V. & Marchiori, M. Efficient behavior of small-world networks. Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.87.198701 (2001).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • 68.

    Latora, V. L. & Marchiori, M. A measure of centrality based on network efficiency. New J. Phys. 9, 188 (2007).

    ADS 

    Google Scholar
     

  • 69.

    Bian, T., Hu, J. & Deng, Y. Identifying influential nodes in complex networks based on AHP. Phys. A Stat. Mech. Appl. 479, 422–436 (2017).

    MathSciNet 

    Google Scholar
     

  • 70.

    Maslov, S., Sneppen, K. & Zaliznyak, A. Detection of topological patterns in complex networks: Correlation profile of the internet. Phys. A Stat. Mech. Appl. 333, 529–540 (2004).


    Google Scholar
     

  • 71.

    Ma, A. & Mondragón, R. J. Rich-cores in networks. PLoS ONE 10, 1–13 (2015).


    Google Scholar
     

  • 72.

    Albert, R., Jeong, H. & Barabási, A.-L. Error and attack tolerance of layered complex networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 76, 378–381 (2007).


    Google Scholar
     

  • 73.

    Moore, C., Grewar, J. & Cumming, G. S. Quantifying network resilience: Comparison before and after a major perturbation shows strengths and limitations of network metrics. J. Appl. Ecol. 53, 636–645 (2016).


    Google Scholar
     

  • 74.

    Borgatti, S. P. Centrality and network flow. Soc. Netw. 27, 55–71 (2005).


    Google Scholar
     

  • 75.

    Qi, X., Fuller, E., Wu, Q., Wu, Y. & Zhang, C. Q. Laplacian centrality: A new centrality measure for weighted networks. Inf. Sci. (N.Y.) 194, 240–253 (2012).

    MathSciNet 
    MATH 

    Google Scholar
     

  • 76.

    Sneppen, K., Trusina, A. & Rosvall, M. Hide-and-seek on complex networks. Europhys. Lett. 69, 853–859 (2005).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • 77.

    Borgatti, S. P. & Jones, C. Network measures of social capital. Connections 21, 27–36 (1998).


    Google Scholar
     

  • 78.

    Bruun, J., Brewe, E., Bruun, J. & Brewe, E. Talking and learning physics: Predicting future grades from network measures and force concept inventory pretest scores. Phys. Rev. Spec. Top. Phys. Educ. Res. 9, 020109 (2013).

    ADS 

    Google Scholar
     

  • 79.

    R Core Team. R: A Language and Environment for Statistical Computing (2018).

  • 80.

    Jalili, M. et al. CentiServer: A comprehensive resource, web-based application and r package for centrality analysis. PLoS ONE 10, e0143111 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 81.

    Watson, C. G. brainGraph: Graph Theory Analysis of Brain MRI Data. (2018).

  • 82.

    Demšar, J. et al. Orange: Data mining toolbox in Python. J. Mach. Learn. Res. 14, 23492353 (2013).

    MATH 

    Google Scholar
     

  • 83.

    Mertens, F., Saint-Charles, J., Lucotte, M. & Mergler, D. Emergence and robustness of a community discussion network on mercury contamination and health in the Brazilian Amazon. Health Educ. Behav. 35, 509–521 (2008).

    PubMed 

    Google Scholar
     

  • 84.

    Hung, W., Jonassen, D. H. & Liu, R. Problem-based learning. Handb. Res. Educ. Commun. Technol. 3, 485–506 (2008).


    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *