Role of C4 carbon fixation in Ulva prolifera, the macroalga responsible for the world’s largest green tides


  • 1.

    Raven, J. A. Carbon dioxide fixation. in Algal Physiology and Biochemistry (ed Stewart, W. D. P.) 434–455 (Blackwell Scientific Publications, Oxford, 1974).

  • 2.

    Cooper, T. G., Filmer, D., Wishnick, M. & Lane, M. D. The active species of “CO2” utilized by ribulose diphosphate carboxylase. J. Biol. Chem. 244, 1081–1083 (1969).

    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Badger, M. R. et al. The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae. Can. J. Bot. 76, 1052–1071 (1998).

    CAS 

    Google Scholar
     

  • 4.

    Burkhardt, S., Amoroso, G., Riebesell, U. & Sültemeyerl, D. CO2 and HCO3 uptake in marine diatoms acclimated to different CO2 concentrations. Limnol. Oceanogr. 46, 1378–1391 (2001).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Giordano, M., Beardall, J. & Raven, J. A. CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Ann. Rev. Plant Biol. 56, 99–131 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Reiskind, J. B. & Bowes, G. The role of phosphoenolpyruvate carboxykinase in a marine macroalga with C4-like photosynthetic characteristics. Proc. Natl Acad. Sci. USA 88, 2883–2887 (1991).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Reinfelder, J. R., Kraepiel, A. M. L. & Morel, F. M. M. Unicellular C4 photosynthesis in a marine diatom. Nature 407, 996–999 (2000).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Reinfelder, J. R., Milligan, A. J. & Morel, F. M. M. The role of the C4 pathway in carbon accumulation and fixation in a marine diatom. Plant Physiol. 135, 2106–2111 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Shao, H. et al. Responses of Ottelia alismoides, an aquatic plant with three CCMs, to variable CO2 and light. J. Exp. Bot. 68, 3985–3995 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Han, S. et al. Structural basis for C4 photosynthesis without Kranz anatomy in leaves of the submerged freshwater plant Ottelia alismoides. Ann. Bot. 125, 869–879 (2020).

    Article 

    Google Scholar
     

  • 11.

    Liu, D., Keesing, J. K., Xing, Q. & Shi, P. Worldʼs largest macroalgal bloom caused by expansion of seaweed aquaculture in China. Mar. Poll. Bull. 58, 888–895 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Keesing, J. K., Liu, D. Y., Fearns, P. & Garcia, R. Inter-and intra-annual patterns of Ulva prolifera green tides in the Yellow Sea during 2007–2009, their origin and relationship to the expansion of coastal seaweed aquaculture in China. Mar. Poll. Bull. 62, 1169–1182 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Liu, D. et al. The worldʼs largest macroalgal bloom in the Yellow Sea, China: formation and implications. Estuar. Coast. Shelf Sci. 129, 2–10 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Zhang, J. H., Kim, J. K., Yarish, C. & He, P. The expansion of Ulva prolifera O.F. Müller macroalgal blooms in the Yellow Sea, PR China, through asexual reproduction. Mar. Poll. Bull. 104, 101–106 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Xu, J. et al. Evidence of coexistence of C3 and C4 photosynthetic pathways in a green-tide-forming alga, Ulva prolifera. PLoS ONE 7, e37438 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Valiela, I., Liu, D., Lloret, J., Chenoweth, K. & Hanacek, D. Stable isotopic evidence of nitrogen sources and C4 metabolism driving the worldʼs largest macroalgal green tides in the Yellow Sea. Sci. Rep. 8, 17437 (2018).

    Article 

    Google Scholar
     

  • 17.

    Hatch, M. D. C4 photosynthesis: a unique blend of modified biochemistry, anatomy and ultrastructure. Biochim. Biophys. Acta Rev. Bioenerg. 895, 81–106 (1987).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Haimovich-Dayan, M. et al. The role of C4 metabolism in the marine diatom Phaeodactylum tricornutum. N. Phytol. 197, 177–185 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    OʼLeary, M. H. Carbon isotopes in photosynthesis. BioScience 38, 328–336 (1988).

    Article 

    Google Scholar
     

  • 20.

    Fry, B. 13C/12C fractionation by marine diatoms. Mar. Ecol. Prog. Ser. 134, 283–294 (1996).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Carvalho, M. C. & Eyre, B. D. Carbon stable isotope discrimination during respiration in three seaweed species. Mar. Ecol. Prog. Ser. 437, 41–49 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Cornwall, C. E. et al. Inorganic carbon physiology underpins macroalgal responses to elevated CO2. Sci. Rep. 7, 46297 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Carvalho, M. C., Hayashizaki, K. & Ogawa, H. Short-term measurement of carbon stable isotope discrimination in photosynthesis and respiration by aquatic macrophytes, with marine macroalgal examples. J. Phycol. 45, 761–770 (2009).

    Article 

    Google Scholar
     

  • 24.

    Raven, J. A., Giordano, M., Beardall, J. & Maberly, S. C. Algal evolution in relation to atmospheric CO2: carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles. Philos. Trans. Roy. Soc. B 367, 493–507 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Roberts, K., Granum, E., Leegood, R. C. & Raven, J. A. C3 and C4 pathways of photosynthetic carbon assimilation in marine diatoms are under genetic, not environmental control. Plant Physiol. 145, 230–235 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Roberts, K., Granum, E., Leegood, R. C. & Raven, J. A. Carbon acquisition by diatoms. Photosynth. Res. 93, 79–88 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Beardall, J. & Giordano, M. Ecological implications of microalgal and cyanobacterial CO2 concentrating mechanisms, and their regulation. Funct. Plant Biol. 29, 335–347 (2002).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Palmqvist, K., Yu, J. W. & Badger, M. R. Carbonic anhydrase activity and inorganic carbon fluxes in low- and high-Ci cells of Chlamydomonas reinhardtü and Scenedesmus obliquus. Physiol. Plant. 90, 537–547 (1994).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Reinfelder, J. R. Carbon concentrating mechanisms in eukaryotic marine phytoplankton. Ann. Rev. Mar. Sci. 3, 291–315 (2011).

    Article 

    Google Scholar
     

  • 30.

    Beardall, J. Effects of photon flux density on the CO2-concentrating mechanism of the cyanobacterium Anabaena variabilis. J. Plankton Res. 13, 133–141 (1991).


    Google Scholar
     

  • 31.

    Kargul, J. & Barber, J. Photosynthetic acclimation: structural reorganization of light harvesting antenna-role of redox-dependent phosphorylation of major and minor chlorophyll a/b binding proteins. FEBS J. 275, 1056–1068 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Zhao, X., Tang, X., Zhang, H., Qu, T. & Wang, Y. Photosynthetic adaptation strategy of Ulva prolifera floating on the sea surface to environmental changes. Plant Physiol. Biochem. 107, 116–125 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 33.

    Xu, J. & Gao, K. Future CO2-induced ocean acidification mediates the physiological performance of a green tide alga. Plant Physiol. 160, 1762–1769 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 34.

    Li, J., Sun, X. & Zheng, S. In situ study on photosynthetic characteristics of phytoplankton in the Yellow Sea and East China Sea in summer 2013. J. Mar. Syst. 160, 94–106 (2016).

    Article 

    Google Scholar
     

  • 35.

    Qin, B. Y., Tao, Z., Li, Z. W. & Yang, X. F. Seasonal changes and controlling factors of sea surface pCO2 in the Yellow Sea. IOP Conf. Ser. 17, 012025 (2014).

    Article 

    Google Scholar
     

  • 36.

    Krause-Jensen, D., McGlathery, K., Rysgaard, S. & Christensen, P. B. Production within dense mats of the filamentous macroalga Chaetomorpha linum in relation to light and nutrient availability. Mar. Ecol. Prog. Ser. 134, 207–216 (1996).

    Article 

    Google Scholar
     

  • 37.

    Keesing, J. K., Liu, D., Shi, Y. & Wang, Y. Abiotic factors influencing biomass accumulation of green tide causing Ulva spp. on Pyropia culture rafts in the Yellow Sea, China. Mar. Poll. Bull. 105, 88–97 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 38.

    Pierrot, D., Lewis, E. & Wallace, D. W. R. MS Excel Program Developed for CO2System Calculations. ORNL/CDIAC−105a. (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee, 2006).

  • 39.

    Wilbur, K. M. & Anderson, N. G. Electronic and colorimetric determination of carbonic anhydrase. J. Biol. Chem. 176, 147–154 (1948).

    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *