Running performance with emphasis on low temperatures in a Patagonian lizard, Liolaemus lineomaculatus


  • 1.

    Robert Feldmeth, C., Stone, E. A. & Brown, J. H. An increased scope for thermal tolerance upon acclimating pupfish (Cyprinodon) to cycling temperatures. J. Comp. Physiol. 89, 39–44 (1974).


    Google Scholar
     

  • 2.

    Hertz, P. E. Adaptation to altitude in two West Indian anoles. Animals 195, 25–37 (1981).


    Google Scholar
     

  • 3.

    Hertz, P. E. & Huey, R. B. Compensation for altitudinal changes in the thermal environment by some anolis lizards on Hispaniola. Ecology 62, 515–521 (1981).


    Google Scholar
     

  • 4.

    Hertz, P. E., Huey, R. B. & Nevo, E. Fight versus flight: body temperature influences defensive responses of lizards. Anim. Behav. 30, 676–679 (1982).


    Google Scholar
     

  • 5.

    Stillman, J. H. Acclimation capacity underlies susceptibility to climate change. Science 301, 65 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Chown, S. L., Gaston, K. J. & Robinson, D. Macrophysiology: large-scale patterns in physiological traits and their ecological implications. Funct. Ecol. 18, 159–167 (2004).


    Google Scholar
     

  • 7.

    Chown, S. L. et al. Adapting to climate change: a perspective from evolutionary physiology. Clim. Res. 43, 3–15 (2010).


    Google Scholar
     

  • 8.

    Clusella-Trullas, S., Blackburn, T. M. & Chown, S. L. Climatic predictors of temperature performance curve parameters in ectotherms imply complex responses to climate change. Am. Nat. 177, 738–751 (2011).

    PubMed 

    Google Scholar
     

  • 9.

    Bowler, K. & Terblanche, J. S. Insect thermal tolerance: what is the role of ontogeny, ageing and senescence?. Biol. Rev. 83, 339–355 (2008).

    PubMed 

    Google Scholar
     

  • 10.

    Huey, R. B. et al. Why tropical forest lizards are vulnerable to climate warming. Proc. R. Soc. B 276, 1939–1948 (2009).

    PubMed 

    Google Scholar
     

  • 11.

    Waldschmidt, S. & Tracy, C. R. Interactions between a lizard and its thermal environment: implications for sprint performance and space utilization in the lizard Uta stansburiana. Ecology 64, 476–484 (1983).


    Google Scholar
     

  • 12.

    Huey, R. B. & Bennett, A. F. Phylogenetic studies of coadaptation: preferred temperatures versus optimal performance temperature of lizards. Evolution 41, 1098–1115 (1987).

    PubMed 

    Google Scholar
     

  • 13.

    Huey, R. B. & Stevenson, R. D. Intergrating thermal physiology and ecology of ecotherms: a discussion of approaches. Am. Zool. 19, 357–366 (1979).


    Google Scholar
     

  • 14.

    Huey, R. B. & Kingsolver, J. G. Evolution of thermal sensitivity of ectotherm performance. Trends Ecol. Evol. 4, 131–135 (1989).

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Huey, R. B. & Kingsolver, J. G. Evolution of resistance to high temperature in ectotherms. Am. Nat. 142, 21–46 (1993).


    Google Scholar
     

  • 16.

    Angilletta, M. J., Wilson, R. S., Navas, C. A. & James, R. S. Tradeoffs and the evolution of thermal reaction norms. Trends Ecol. Evol. 18, 234–240 (2003).


    Google Scholar
     

  • 17.

    Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford University Press, Oxford, 2009).


    Google Scholar
     

  • 18.

    Kingsolver, J. G. et al. Complex life cycles and the responses of insects to climate change. Integr. Comp. Biol. 51, 719–732 (2011).

    PubMed 

    Google Scholar
     

  • 19.

    Logan, M. L., Cox, R. M. & Calsbeek, R. Natural selection on thermal performance in a novel thermal environment. Proc. Natl. Acad. Sci. 111, 14165–14169 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Sinclair, B. J. et al. Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures?. Ecol. Lett. 19, 1372–1385 (2016).

    PubMed 

    Google Scholar
     

  • 21.

    Izem, R. & Kingsolver, J. G. Variation in continuous reaction norms: quantifying directions of biological interest. Am. Nat. 166, 277–289 (2005).

    PubMed 

    Google Scholar
     

  • 22.

    Frazier, M. R., Huey, R. B. & Berrigan, D. Thermodynamics constrains the evolution of insect population growth rates: “warmer is better”. Am. Nat. 168, 512–520 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Kingsolver, J. G. The well-temperatured biologist. Am. Nat. 174, 755–768 (2009).

    PubMed 

    Google Scholar
     

  • 24.

    Bennett, A. F. Thermal dependence of locomotor capacity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 259, 253–258 (1990).


    Google Scholar
     

  • 25.

    van Damme, R., Bauwens, D. & Verheyen, R. F. Evolutionary rigidity of thermal physiology: the case of the cool temperate lizard Lacerta vivipara. Oikos 57, 61 (1990).


    Google Scholar
     

  • 26.

    Swoap, S. J., Johnson, T. P., Josephson, R. K. & Bennett, A. F. Temperature, muscle power output and limitations on burst locomotor performance of the lizard Dipsosaurus dorsalis. J. Exp. Biol. 174, 199–213 (1993).


    Google Scholar
     

  • 27.

    Vicenzi, N., Corbalán, V., Miles, D., Sinervo, B. & Ibargüengoytía, N. Range increment or range detriment? Predicting potential changes in distribution caused by climate change for the endemic high-Andean lizard Phymaturus palluma. Biol. Conserv. 206, 151–160 (2017).


    Google Scholar
     

  • 28.

    Vicenzi, N., Kubisch, E., Ibargüengoytía, N. & Corbalán, V. Thermal sensitivity of performance of Phymaturus palluma (Liolaemidae) in the highlands of Aconcagua : vulnerability to global warming in the Andes. Amphibia-Reptilia 01, 1–12 (2018).


    Google Scholar
     

  • 29.

    Brattstrom, B. H. Thermal acclimation in anuran amphibians as a function of latitude and altitude. Comp. Biochem. Physiol. 24, 93–111 (1968).

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Bauwens, D., Castilla, A. M., Van Damme, R. & Verheyen, R. F. Field body temperatures and thermoregulatory behavior of the high altitude lizard, Lacerta bedriagae. J. Herpetol. 24, 88–91 (1990).


    Google Scholar
     

  • 31.

    Adolph, S. C. & Porter, W. P. Temperature, activity, and lizard life histories. Am. Nat. 142, 273–295 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Díaz, J. A. & Cabezas-Díaz, S. Seasonal variation in the contribution of different behavioural mechanisms to lizard thermoregulation. Funct. Ecol. 18, 867–875 (2004).


    Google Scholar
     

  • 33.

    Munoz, M. M. et al. Evolutionary stasis and lability in thermal physiology in a group of tropical lizards. Proc. R. Soc. B 281, 20132433–20132433 (2014).

    PubMed 

    Google Scholar
     

  • 34.

    Cei, J. M. Reptiles del centro, centro-oeste y sur de la Argentina. Herpetofauna de las zonas áridas y semiáridas. Mitt. zool. Mus. vol. 64 (Torino: Museo Regionale di Scienze Naturali, 1988).

  • 35.

    Scolaro, J. A. Reptiles Patagónicos Sur: Una Guía de Campo (Universidad Nacional de la Patagonia, Comodoro Rivadavia, 2005).


    Google Scholar
     

  • 36.

    Cecchetto, N. R., Medina, S. M., Taussig, S. & Ibargüengoytía, N. R. The lizard abides: cold hardiness and winter refuges of Liolaemus pictus argentinus in Patagonia, Argentina. Can. J. Zool. 782, 773–782 (2019).


    Google Scholar
     

  • 37.

    Ibargüengoytía, N. R. et al. Thermal biology of the southernmost lizards in the world: Liolaemus sarmientoi and Liolaemus magellanicus from Patagonia, Argentina. J. Therm. Biol. 35, 21–27 (2010).


    Google Scholar
     

  • 38.

    Fernández, J., Smith, J., Scolaro, A. & Ibargüengoytía, N. R. Performance and thermal sensitivity of the southernmost lizards in the world, Liolaemus sarmientoi and Liolaemus magellanicus. J. Therm. Biol. 36, 15–22 (2011).


    Google Scholar
     

  • 39.

    Piantoni, C., Ibargüengoytía, N. R. & Cussac, V. E. Age and growth of the Patagonian lizard Phymaturus patagonicus. Amphibia-Reptilia 27, 385–392 (2006).


    Google Scholar
     

  • 40.

    Boretto, J. M. & Ibargüengoytía, N. R. Phymaturus of Patagonia, Argentina: reproductive biology of Phymaturus zapalensis (Liolaemidae) and a comparison of sexual dimorphism within the genus. J. Herpetol. 43, 96–104 (2009).


    Google Scholar
     

  • 41.

    Gutiérrez, J. A., Piantoni, C. & Ibargüengoytía, N. R. Altitudinal effects on life history parameters in populations of Liolaemus pictus argentinus (Sauria:Liolaemidae). Acta Herpetol. 8, 9–17 (2013).


    Google Scholar
     

  • 42.

    Pianka, E. R. Comparative autecology of the lizard Cnemidophorus tigris in different parts of its georgraphic range. Ecology 51, 703–720 (1970).


    Google Scholar
     

  • 43.

    James, C. & Shine, R. Life-history strategies of australian lizards: a comparison between the tropics and the temperate zone. Oecologia 75, 307–316 (1988).

    ADS 
    PubMed 

    Google Scholar
     

  • 44.

    Piantoni, C., Navas, C. A. & Ibargüengoytía, N. R. A real tale of Godzilla: impact of climate warming on the growth of a lizard. Biol. J. Linn. Soc. 126, 768–782 (2019).


    Google Scholar
     

  • 45.

    Gutiérrez, J. A., Krenz, J. D. & Ibargüengoytía, N. R. Effect of altitude on thermal responses of Liolaemus pictus argentinus in Argentina. J. Therm. Biol. 35, 332–337 (2010).


    Google Scholar
     

  • 46.

    Medina, M. et al. Thermal biology of genus Liolaemus: a phylogenetic approach reveals advantages of the genus to survive climate change. J. Therm. Biol. 37, 579–586 (2012).


    Google Scholar
     

  • 47.

    Huey, R. B. Physiological consequences of habitat selection. Am. Nat. 137, 91–115 (1991).


    Google Scholar
     

  • 48.

    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B 278, 1823–1830 (2011).

    PubMed 

    Google Scholar
     

  • 49.

    Irschick, D. J. & Meyers, J. J. An analysis of the relative roles of plasticity and natural selection in the morphology and performance of a lizard (Urosaurus ornatus). Oecologia 153, 489–499 (2007).

    ADS 
    PubMed 

    Google Scholar
     

  • 50.

    Strobbe, F., McPeek, M. A., De Block, M., De Meester, L. & Stoks, R. Survival selection on escape performance and its underlying phenotypic traits: a case of many-to-one mapping. J. Evol. Biol. 22, 1172–1182 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Lima, S. L. Putting predators back into behavioral predator–prey interactions. Trends Ecol. Evol. 17, 70–75 (2002).


    Google Scholar
     

  • 52.

    Herczeg, G. et al. Experimental support for the cost–benefit model of lizard thermoregulation: the effects of predation risk and food supply. Oecologia 155, 1–10 (2008).

    ADS 
    PubMed 

    Google Scholar
     

  • 53.

    Lopez-Darias, M., Schoener, T. W., Spiller, D. A. & Losos, J. B. Predators determine how weather affects the spatial niche of lizard prey: exploring niche dynamics at a fine scale. Ecology 93, 2512–2518 (2012).

    PubMed 

    Google Scholar
     

  • 54.

    Bakken, G. S. & Angilletta, M. J. How to avoid errors when quantifying thermal environments. Funct. Ecol. 28, 96–107 (2014).


    Google Scholar
     

  • 55.

    Zagar, A., Carretero, M. A., Marguc, D., Simcic, T. & Vrezec, A. A metabolic syndrome in terrestrial ectotherms with different elevational and distribution patterns. Ecography 41, 1728–1739 (2018).


    Google Scholar
     

  • 56.

    Bartheld, J. L., Artacho, P. & Bacigalupe, L. Thermal performance curves under daily thermal fluctuation: a study in helmeted water toad tadpoles. J. Therm. Biol. 70, 80–85 (2017).

    PubMed 

    Google Scholar
     

  • 57.

    Kingsolver, J. G. & Huey, R. B. Introduction: the evolution of morphology, performance, and fitness. Integr. Comp. Biol. 43, 361–366 (2006).


    Google Scholar
     

  • 58.

    Bonino, M. F. et al. Running in cold weather: Morphology, thermal biology, and performance in the southernmost lizard clade in the world (Liolaemus lineomaculatus section: Liolaemini: Iguania). J. Exp. Zool. A. 315, 495–503 (2011).


    Google Scholar
     

  • 59.

    Kubisch, E. L., Fernández, J. & Ibargüengoytía, N. R. Is locomotor performance optimised at preferred body temperature? A study of Liolaemus pictus argentinus from northern Patagonia, Argentina. J. Therm. Biol. 36, 328–333 (2011).


    Google Scholar
     

  • 60.

    Angilletta, M. J. Jr. Thermal and physiological constraints on energy assimilation in a widespread lizard (Sceloporus undulatus). Ecology 82, 3044–3056 (2001).


    Google Scholar
     

  • 61.

    Buckley, L. B., Ehrenberger, J. C. & Angilletta, M. J. Jr. Thermoregulatory behaviour limits local adaptation of thermal niches and confers sensitivity to climate change. Funct. Ecol. 29, 1038–1047 (2015).


    Google Scholar
     

  • 62.

    Taucare-Rios, A., Veloso, C. & Bustamante, R. O. Thermal niche conservatism in an environmental gradient in the spider Sicarius thomisoides (Araneae: Sicariidae): implications for microhabitat selection. J. Therm. Biol. 78, 298–303 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 63.

    Medina, M., Scolaro, J. A., Méndez-de la Cruz, F., Sinervo, B. & Ibargüengoytía, N. R. Thermal relationships between body temperature and environment conditions set upper distributional limits on oviparous species. J. Therm. Biol. 36, 527–534 (2011).


    Google Scholar
     

  • 64.

    Ibargüengoytía, N. R., Renner, M. L. & Boretto, J. M. Thermal effects on locomotion in the nocturnal gecko Homonota darwini (Gekkonidae). Amphibia-Reptilia 28, 235–246 (2007).


    Google Scholar
     

  • 65.

    Medina, S. M. & Ibargüengoytía, N. R. How do viviparous and oviparous lizards reproduce in Patagonia? A comparative study of three species of Liolaemus. J. Arid Environ. 74, 1024–1032 (2010).

    ADS 

    Google Scholar
     

  • 66.

    Boretto, J. M., Cabezas-Cartes, F. & Ibargüengoytía, N. R. Slow life histories in lizards living in the highlands of the Andes Mountains. J. Comp. Physiol. B 188, 491–503 (2018).

    PubMed 

    Google Scholar
     

  • 67.

    Nussey, D. H., Wilson, A. J. & Brommer, J. E. The evolutionary ecology of individual phenotypic plasticity in wild populations. J. Evol. Biol. 20, 831–844 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 68.

    Artacho, P., Jouanneau, I. & Le Galliard, J.-F. Interindividual variation in thermal sensitivity of maximal sprint speed, thermal behavior, and resting metabolic rate in a lizard. Physiol. Biochem. Zool. 86, 458–469 (2013).

    PubMed 

    Google Scholar
     

  • 69.

    Bonino, M. F., Moreno Azócar, D. L., Schulte, J. A. & Cruz, F. B. Climate change and lizards: changing species’ geographic ranges in Patagonia. Reg. Environ. Chang. 15, 1121–1132 (2015).


    Google Scholar
     

  • 70.

    Gvozdík, L. & Castilla, A. M. A comparative study of preferred body temperatures and critical thermal tolerance limits among populations of Zootoca vivipara (Squamata: Lacertidae) along an altitudinal gradient. J. Herpetol. 35, 486–492 (2001).


    Google Scholar
     

  • 71.

    Angilletta, M. J. Estimating and comparing thermal performance curves. J. Therm. Biol. 31, 541–545 (2006).


    Google Scholar
     

  • 72.

    Hertz, P. E., Huey, R. B. & Nevo, E. Homage to Santa Anita: thermal sensitivity of sprint speed in agamid lizards. Evolution 37, 1075–1084 (1983).

    PubMed 

    Google Scholar
     

  • 73.

    Zamora-Camacho, F. J., Rubiño-Hispán, M. V., Reguera, S. & Moreno-Rueda, G. Thermal dependence of sprint performance in the lizard Psammodromus algirus along a 2200-meter elevational gradient: Cold-habitat lizards do not perform better at low temperatures. J. Therm. Biol. 52, 90–96 (2015).

    PubMed 

    Google Scholar
     

  • 74.

    Huey, R. B. & Slatkin, M. Cost and benefits of lizard thermoregulation. Q. Rev. Biol. 51, 363–384 (1976).

    CAS 
    PubMed 

    Google Scholar
     

  • 75.

    Logan, M. L., Fernandez, S. G. & Calsbeek, R. Abiotic constraints on the activity of tropical lizards. Funct. Ecol. 29, 694–700 (2015).


    Google Scholar
     

  • 76.

    Sears, M. W. & Angilletta, M. J. Costs and benefits of thermoregulation revisited: both the heterogeneity and spatial structure of temperature drive energetic costs. Am. Nat. 185, E94–E102 (2015).

    PubMed 

    Google Scholar
     

  • 77.

    Basson, C. H., Levy, O., Angilletta, M. J. & Clusella-Trullas, S. Lizards paid a greater opportunity cost to thermoregulate in a less heterogeneous environment. Funct. Ecol. 31, 856–865 (2017).


    Google Scholar
     

  • 78.

    Stankowich, T. & Blumstein, D. T. Fear in animals: a meta-analysis and review of risk assessment. Proc. R. Soc. B 272, 2627–2634 (2005).

    PubMed 

    Google Scholar
     

  • 79.

    Stephens, D. W. & Charnov, E. L. Optimal foraging: some simple stochastic models. Behav. Ecol. Sociobiol. 10, 251–263 (1982).


    Google Scholar
     

  • 80.

    Kacelnik, A. & Bateson, M. Risky theories: the effects of variance on foraging decisions. Am. Zool. 36, 402–434 (1996).


    Google Scholar
     

  • 81.

    Lister, B. C. & Aguayo, A. G. Seasonality, predation, and the behaviour of a tropical mainland anole. J. Anim. Ecol. 61, 717–733 (1992).


    Google Scholar
     

  • 82.

    Broeckhoven, C. & Nortier, F. Some like it hot: camera traps unravel the effects of weather conditions and predator presence on the activity levels of two lizards. PLoS ONE 10, 1–15 (2015).


    Google Scholar
     

  • 83.

    Angilletta, M. J., Niewiarowski, P. H. & Navas, C. A. The evolution of thermal physiology in ectotherms. J. Therm. Biol. 27, 249–268 (2002).


    Google Scholar
     

  • 84.

    Ibargüengoytía, N. R. et al. Volcanic ash from Puyehue-Cordon Caulle eruptions affects running performance and body condition of Phymaturus lizards in Patagonia, Argentina. Biol. J. Linn. Soc. 118, 842–851 (2016).


    Google Scholar
     

  • 85.

    Geng, J., Dong, W., Wu, Q. & Lu, H.-L. Thermal tolerance for two cohorts of a native and an invasive freshwater turtle species. Acta Herpetol. 13, 83–88 (2018).


    Google Scholar
     

  • 86.

    Thompson, M. E., Halstead, B. J. & Donnelly, M. A. Thermal quality influences habitat use of two Anolis species. J. Therm. Biol. 18, 54–61 (2018).


    Google Scholar
     

  • 87.

    Bakken, G. S. Measurement and application of operative and standard operative temperatures in ecology. Am. Zool. 32, 194–216 (1992)

  • 88.

    Medina, S. M. Adaptaciones morfológicas y fisiológicas ligadas a la transición oviparidad-viviparidad en lagartos de climas fríos: reproducción y fisiología térmica. (PhD thesis, Universidad Nacional del Comahue, 2010).

  • 89.

    Lindsey, A. A. & Newman, J. E. Use of official wather data in spring time: temperature analysis of an Indiana phenological record. Ecology 37, 812–823 (1956).


    Google Scholar
     

  • 90.

    Guisan, A. & Hofer, U. Predicting reptile distributions at the mesoscale: relation to climate and topography. J. Biogeogr. 30, 1233–1243 (2003).


    Google Scholar
     

  • 91.

    Schwanz, L. E. & Janzen, F. J. Climate change and temperature-dependent sex determination: can individual plasticity in nesting phenology prevent extreme sex ratios?. Physiol. Biochem. Zool. 81, 826–834 (2008).

    PubMed 

    Google Scholar
     

  • 92.

    Murphy, M. A., Evans, J. S. & Storfer, A. Quantifying Bufo boreas connectivity in Yellowstone National Park with landscape genetics. Ecology 91, 252–261 (2010).

    PubMed 

    Google Scholar
     

  • 93.

    Boyero, L. et al. A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration. Ecol. Lett. 14, 289–294 (2011).

    PubMed 

    Google Scholar
     

  • 94.

    Graae, B. J. et al. On the use of weather data in ecological studies along altitudinal and latitudinal gradients. Oikos 121, 3–19 (2012).


    Google Scholar
     

  • 95.

    Mitchell, N. et al. Linking eco-energetics and eco-hydrology to select sites for the assisted colonization of Australia’s rarest reptile. Biology 2, 1–25 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 96.

    Peig, J. & Green, A. J. New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos 118, 1883–1891 (2009).


    Google Scholar
     

  • 97.

    Legendre, P. lmodel2: Model II Regression. (2014).

  • 98.

    R Core Team. R: A Language and Environment for Statistical Computing. (R Core Team, Vienna, 2019).

  • 99.

    Wood, S. & Wood, M. S. Package ‘mgcv’. R Packag. version 1–7 (2015).

  • 100.

    Hastie, T. & Tibshirani, R. Generalized additive models: some applications. J. Am. Stat. Assoc. 82, 371–386 (1987).

    MATH 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *