Scientific, sustainability and regulatory challenges of cultured meat


  • 1.

    Sharma, S., Thind, S. S. & Kaur, A. In vitro meat production system: why and how? J. Food Sci. Technol. 52, 7599–7607 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Macdiarmid, J. I., Douglas, F. & Campbell, J. Eating like there’s no tomorrow: public awareness of the environmental impact of food and reluctance to eat less meat as part of a sustainable diet. Appetite 96, 487–493 (2016).

    PubMed 

    Google Scholar
     

  • 3.

    Mattick, C. S., Landis, A. E., Allenby, B. R. & Genovese, N. J. Anticipatory life cycle analysis of in vitro biomass cultivation for cultured meat production in the United States. Environ. Sci. Technol. 49, 11941–11949 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Tuomisto, H. L. & de Mattos, M. J. Environmental impacts of cultured meat production. Environ. Sci. Technol. 45, 6117–6123 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Tuomisto, H. L., Ellis, M. J. & Haastrup, P. in LCA Food 2014 (eds Schenck, R. & Huizenga, D.) 1360–1367 (Vashon, 2014).

  • 6.

    Lynch, J. & Pierrehumbert, R. Climate impacts of cultured meat and beef cattle. Front. Sustain. Food Syst. https://doi.org/10.3389/fsufs.2019.00005 (2019).

    Article 

    Google Scholar
     

  • 7.

    Schaefer, G. O. & Savulescu, J. The ethics of producing in vitro meat. J. Appl. Philos. 31, 188–202 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Census of Agriculture (USDA, 2012).

  • 9.

    Painter, J. A. et al. Attribution of foodborne illnesses, hospitalizations, and deaths to food commodities by using outbreak data, United States, 1998–2008. Emerg. Infect. Dis. 19, 407–415 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Mathew, A. G., Cissell, R. & Liamthong, S. Antibiotic resistance in bacteria associated with food animals: a United States perspective of livestock production. Food. Pathog. Dis. 4, 115–133 (2007).

    CAS 

    Google Scholar
     

  • 11.

    Oliver, S. P., Murinda, S. E. & Jayarao, M. Impact of antibiotic use in adult dairy cows on antimicrobial resistance of veterinary and human pathogens: a comprehensive review. Food. Pathog. Dis. 8, 337–355 (2011).

    CAS 

    Google Scholar
     

  • 12.

    World Livestock 2011: Livestock in Food Security (FAO, 2011).

  • 13.

    Young, P. The Victorians caused the meat eating crisis the world faces today – but they might help us solve it. The Conversation (21 January 2019).

  • 14.

    Post, M. J. Cultured beef: medical technology to produce food. J. Sci. Food Agri. 94, 1039–1041 (2014).

    CAS 

    Google Scholar
     

  • 15.

    Williams, L. A., Davis-Dusenbery, B. N. & Eggan, K. C. SnapShot: directed differentiation of pluripotent stem cells. Cell 149, 1174 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Diaz-Flores, L.Jr et al. Adult stem and transit-amplifying cell location. Histol. Histopathol. 21, 995–1027 (2006).

    PubMed 

    Google Scholar
     

  • 17.

    Post, M. J. Cultured meat from stem cells: challenges and prospects. Meat Sci. 92, 297–301 (2012).

    PubMed 

    Google Scholar
     

  • 18.

    Stephens, N. et al. Bringing cultured meat to market: technical, socio-political, and regulatory challenges in cellular agriculture. Trends Food Sci. Tech. 78, 155–166 (2018).

    CAS 

    Google Scholar
     

  • 19.

    Wosczyna, M. N. & Rando, T. A. A Muscle stem cell support group: coordinated cellular responses in muscle regeneration. Development. Cell 46, 135–143 (2018).

    CAS 

    Google Scholar
     

  • 20.

    Post, M. J. & van der Weele, C. in Principles of Tissue Engineering (eds Lanza, R., Langer, R. & Vacanti, J. P.) 1647–1658 (Elsevier, 2014).

  • 21.

    Zhu, H. et al. Porcine satellite cells are restricted to a phenotype resembling their muscle origin. J. Anim. Sci. 91, 4684–4691 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Ding, S. et al. Maintaining bovine satellite cells stemness through p38 pathway. Sci. Rep. 8, 11 (2018).

    ADS 

    Google Scholar
     

  • 23.

    Ding, S. et al. Characterization and isolation of highly purified porcine satellite cells. Cell Death Discov. 3, 17003 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Rouger, K. et al. Progenitor cell isolation from muscle-derived cells based on adhesion properties. J. Histochem. Cytochem. 55, 607–618 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Wilschut, K. J., Jaksani, S., van den Dolder, J., Haagsman, H. P. & Roelen, B. A. J. Isolation and characterization of porcine adult muscle-derived progenitor cells. J. Cell. Biochem. 105, 1228–1239 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Specht, E. A., Welch, D. R., Rees Clayton, E. M. & Lagally, C. D. Opportunities for applying biomedical production and manufacturing methods to the development of the clean meat industry. Biochem. Engineer. J. 132, 161–168 (2018).


    Google Scholar
     

  • 27.

    van der Weele, C. & Tramper, J. Cultured meat: every village its own factory? Trends Biotechnol. 32, 294–296 (2014).

    PubMed 

    Google Scholar
     

  • 28.

    Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 36 (1961).


    Google Scholar
     

  • 29.

    Yaffe, D. Retention of differentiation potentialities during prolonged cultivation of myogenic cells. Proc. Natl Acad. Sci. USA 61, 477–483 (1968).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Yaffe, D. & Saxel, O. R. A. Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 270, 725–727 (1977).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Antin, P. B. & Ordahl, C. P. Isolation and characterization of an avian myogenic cell line. Dev. Biol. 143, 111–121 (1991).

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Zhu, C.-H. et al. Cellular senescence in human myoblasts is overcome by human telomerase reverse transcriptase and cyclin-dependent kinase 4: consequences in aging muscle and therapeutic strategies for muscular dystrophies. Aging Cell 6, 515–523 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Roberts, R. M., Yuan, Y., Genovese, N. & Ezashi, T. Livestock models for exploiting the promise of pluripotent stem cells. ILAR J. 56, 74–82 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Bogliotti, Y. S. et al. Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. Proc. Natl Acad. Sci. USA 115, 2090–2095 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Choi, K.-H. et al. Chemically defined media can maintain pig pluripotency network in vitro. Stem Cell Rep. 13, 221–234 (2019).

    CAS 

    Google Scholar
     

  • 37.

    Ezashi, T. et al. Derivation of induced pluripotent stem cells from pig somatic cells. Proc. Natl Acad. Sci. USA 106, 10993–10998 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Gao, X. et al. Establishment of porcine and human expanded potential stem cells. Nat. Cell Biol. 21, 687–699 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Pain, B., Kress, C. & Rival-Gervier, S. Pluripotency in avian species. Int. J. Dev. Biol. 62, 245–255 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Chal, J. & Pourquié, O. Making muscle: skeletal myogenesis in vivo and in vitro. Development 144, 2104–2122 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Rao, L., Qian, Y., Khodabukus, A., Ribar, T. & Bursac, N. Engineering human pluripotent stem cells into a functional skeletal muscle tissue. Nat. Commun. 9, 126 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Genovese, N. J., Domeier, T. L., Telugu, B. P. V. L. & Roberts, R. M. Enhanced development of skeletal myotubes from porcine induced pluripotent stem cells. Sci. Rep. 7, 41833 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Ludwig, T. & Thomson, A. J. Defined, feeder-independent medium for human embryonic stem cell culture. Curr. Protoc. Stem Cell Biol. 2, 1C.2.1–1C.2.16 (2007).


    Google Scholar
     

  • 44.

    Ying, Q.-L. et al. The ground state of embryonic stem cell self-renewal. Nature 453, 519 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Chen, G. et al. Chemically defined conditions for human iPSC derivation and culture. Nat. Methods 8, 424 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Burrell, K. et al. Stirred suspension bioreactor culture of porcine induced pluripotent stem cells. Stem Cells Dev. 28, 1264–1275 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 47.

    Manstein, F., Halloin, C. & Zweigerdt, R. in Cell-Based Assays Using iPSCs for Drug Development and Testing (eds Mandenius, C.-F. & Ross, J. A.) 79–91 (Springer, 2019).

  • 48.

    Mizukami, A. & Swiech, K. Mesenchymal stromal cells: from discovery to manufacturing and commercialization. Stem Cell. Intl 2018, 4083921 (2018).


    Google Scholar
     

  • 49.

    Amable, P. & Butler, M. in Animal Cell Technology (eds Castilho, L. et al.) 36 (Taylor & Francis, 2008).

  • 50.

    Altamirano, C., Illanes, A., Becerra, S., Cairo, J. J. & Godia, F. Considerations on the lactate consumption by CHO cells in the presence of galactose. J. Biotechnol. 125, 547–556 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Europa, A. F., Gambhir, A., Fu, P.-C. & Hu, W.-S. Multiple steady states with distinct cellular metabolism in continuous culture of mammalian cells. Biotech. Bioengineer. 67, 25–34 (2000).

    CAS 

    Google Scholar
     

  • 52.

    Bell, S. L. et al. Genetic engineering of hybridoma glutamine metabolism. Enzyme Microbial. Tech. 17, 98–106 (1995).

    CAS 

    Google Scholar
     

  • 53.

    Bell, S. L. et al. in Animal Cell Technology (eds Spier, R. E., Griffiths, J. B. & MacDonald, C.) 180–182 (Butterworth-Heinemann, 1992).

  • 54.

    Weidemann, R., Ludwig, A. & Kretzmer, G. Low temperature cultivation — a step towards process optimisation. Cytotechnology 15, 111–116 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • 55.

    Hulland, T. J. in Pathology of Domestic Animals 4th edn (eds Jubb, K. V. F., Kennedy, P. C. & Palmer, N.) 183–265 (Academic Press, 1993).

  • 56.

    Lindholm, A., Johansson, H. E. & Kjaersgaard, P. Acute rhabdomyolysis (“tying-up”) in standardbred horses: a morphological and biochemical study. Acta Vet. Scand. 15, 14 (1974).


    Google Scholar
     

  • 57.

    McLean, J. G. Equine paralytic myoglobinuria (“azoturia”): a review. Austr. Vet. J. 49, 41–43 (1973).

    CAS 

    Google Scholar
     

  • 58.

    Goedegebuure, S. A. Spontaneous primary myopathies in domestic mammals: a review. Vet. Quart. 9, 16 (1987).


    Google Scholar
     

  • 59.

    Ryan, P. A., Maher, V. M. & McCormick, J. J. Modification of MCDB 110 medium to support prolonged growth and consistent high cloning efficiency of diploid human fibroblasts. Exp. Cell Res. 172, 318–328 (1987).

    CAS 
    PubMed 

    Google Scholar
     

  • 60.

    Braga, M., Simmons, Z., Norris, K. C., Ferrini, M. G. & Artaza, J. N. Vitamin D induces myogenic differentiation in skeletal muscle derived stem cells. Endocr. Connect. 6, 139–150 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 61.

    van der Valk, J. et al. Optimization of chemically defined cell culture media – replacing fetal bovine serum in mammalian in vitro methods. Toxicol. In Vitro 24, 1053–1063 (2010).

    PubMed 

    Google Scholar
     

  • 62.

    Goonoo, N. & Bhaw-Luximon, A. Mimicking growth factors: role of small molecule scaffold additives in promoting tissue regeneration and repair. RSC Adv. 9, 22 (2019).


    Google Scholar
     

  • 63.

    Ikeda, M. & Nakagawa, S. The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl. Microbiol. Biotechnol. 62, 99–109 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 64.

    Vercalsteren, A. & Boonen, K. Life Cycle Assessment Study of Starch Products for the European Starch Industry Association (Starch Europe): Sector Study (European Starch Industry Association, 2015).

  • 65.

    Kim, S.-K. Marine Proteins and Peptides: Biological Activities and Applications (Wiley Blackwell, 2013).

  • 66.

    Matassa, S., Verstraete, W., Pikaar, I. & Boon, N. Autotrophic nitrogen assimilation and carbon capture for microbial protein production by a novel enrichment of hydrogen-oxidizing bacteria. Water Res. 101, 137–146 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 67.

    Nasseri, A. T., Rasoul-Amini, S., Morowvat, M. H. & Ghasemi, Y. Single cell protein: production and process. J. Food Tech. 6, 13 (2011).


    Google Scholar
     

  • 68.

    Ramos Tercero, E. A., Sforza, E., Morandini, M. & Bertucco, A. Cultivation of Chlorella protothecoides with urban wastewater in continuous photobioreactor: biomass productivity and nutrient removal. Appl. Biochem. Biotechnol. 172, 1470–1485 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 69.

    Xu, H., Miao, X. & Wu, Q. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J. Biotechnol. 126, 499–507 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 70.

    Lowrey, J., Armenta, R. E. & Brooks, M. S. Nutrient and media recycling in heterotrophic microalgae cultures. Appl. Microbiol. Biotechnol. 100, 1061–1075 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 71.

    Yang, L. et al. A novel low cost microalgal harvesting technique with coagulant recovery and recycling. Biores. Technol. 266, 343–348 (2018).

    CAS 

    Google Scholar
     

  • 72.

    Zhu, C., Zhang, R., Cheng, L. & Chi, Z. A recycling culture of Neochloris oleoabundans in a bicarbonate-based integrated carbon capture and algae production system with harvesting by auto-flocculation. Biotechnol. Biofuels 11, 204 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 73.

    Khodayari, A. & Maranas, C. D. A genome-scale Escherichia coli kinetic metabolic model k-ecoli457 satisfying flux data for multiple mutant strains. Nat. Commun. 7, 13806 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 74.

    Mannan, A. A. et al. Integrating kinetic model of E. coli with genome scale metabolic fluxes overcomes its open system problem and reveals bistability in central metabolism. PLoS ONE 10, e0139507 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 75.

    Reed, L. K., Baer, C. F. & Edison, A. S. Considerations when choosing a genetic model organism for metabolomics studies. Curr. Opin. Chem. Biol. 36, 7–14 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 76.

    Fuhrer, T., Zampieri, M., Sévin, D. C., Sauer, U. & Zamboni, N. Genomewide landscape of gene–metabolome associations in Escherichia coli. Molec. Syst. Biol. 13, 907 (2017).


    Google Scholar
     

  • 77.

    Birch, E. W., Udell, M. & Covert, M. W. Incorporation of flexible objectives and time-linked simulation with flux balance analysis. J. Theor. Biol. 345, 12–21 (2014).

    PubMed 
    MATH 

    Google Scholar
     

  • 78.

    Feist, A. M. & Palsson, B. O. What do cells actually want? Genome Biol. 17, 110 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 79.

    Parker, G. A. & Smith, J. M. Optimality theory in evolutionary biology. Nature 348, 27–33 (1990).

    ADS 

    Google Scholar
     

  • 80.

    Vijayakumar, S., Conway, M., Lió, P. & Angione, C. in Metabolic Network Reconstruction and Modeling: Methods and Protocols (ed. Marco Fondi) 389–408 (Springer, 2018).

  • 81.

    Zakrzewski, P. et al. MultiMetEval: comparative and multi-objective analysis of genome-scale metabolic models. PLoS ONE 7, e51511 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 82.

    Heng, B. C. et al. Effect of cell-seeding density on the proliferation and gene expression profile of human umbilical vein endothelial cells within ex vivo culture. Cytotherapy 13, 606–617 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 83.

    Larson, B. L., Ylostalo, J. & Prockop, D. J. Human multipotent stromal cells undergo sharp transition from division to development in culture. Stem Cells 26, 193–201 (2008).

  • 84.

    Rafiq, Q. A., Brosnan, K. M., Coopman, K., Nienow, A. W. & Hewitt, C. J. Culture of human mesenchymal stem cells on microcarriers in a 5 l stirred-tank bioreactor. Biotechnol. Lett. 35, 1233–1245 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 85.

    Simaria, A. S. et al. Allogeneic cell therapy bioprocess economics and optimization: single-use cell expansion technologies. Biotechnol. Bioengineer. 111, 69–83 (2014).

    CAS 

    Google Scholar
     

  • 86.

    Stephenson, M. & Grayson, W. Recent advances in bioreactors for cell-based therapies. F1000Res 7, 517 (2018).


    Google Scholar
     

  • 87.

    Moritz, M. S. M., Verbruggen, S. E. L. & Post, M. J. Alternatives for large-scale production of cultured beef: a review. J. Intergrat. Agri. 14, 208–216 (2015).

    CAS 

    Google Scholar
     

  • 88.

    Verbruggen, S., Luining, D., van Essen, A. & Post, M. J. Bovine myoblast cell production in a microcarriers-based system. Cytotechnology 70, 503–512 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 89.

    Lipsitz, Y. Y., Woodford, C., Yin, T., Hanna, J. H. & Zandstra, P. W. Modulating cell state to enhance suspension expansion of human pluripotent stem cells. Proc. Natl Acad. Sci. USA 115, 6369 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 90.

    Fok, E. Y. & Zandstra, P. W. Shear-controlled single-step mouse embryonic stem cell expansion and embryoid body-based differentiation. Stem Cells 23, 1333–1342 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 91.

    Abbasalizadeh, S., Larijani, M. R., Samadian, A. & Baharvand, H. Bioprocess development for mass production of size-controlled human pluripotent stem cell aggregates in stirred suspension bioreactor. Tissue Engineer. Part C: Methods 18, 831–851 (2012).

    CAS 

    Google Scholar
     

  • 92.

    Chen, V. C. et al. Scalable GMP compliant suspension culture system for human ES cells. Stem Cell Res. 8, 388–402 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 93.

    Tsai, A.-C., Liu, Y., Yuan, X., Chella, R. & Ma, T. Aggregation kinetics of human mesenchymal stem cells under wave motion. Biotechnol. J. 12, 1600448 (2017).


    Google Scholar
     

  • 94.

    Aguanno, S. et al. A three-dimensional culture model of reversibly quiescent myogenic cells. Stem Cells Intl 2019, 7548160 (2019).


    Google Scholar
     

  • 95.

    Schnitzler, A. C. et al. Bioprocessing of human mesenchymal stem/stromal cells for therapeutic use: current technologies and challenges. Biochem. Engineer. J. 108, 3–13 (2016).

    CAS 

    Google Scholar
     

  • 96.

    Schönherr, O. T. in Advanced Research on Animal Cell Technology (ed Milleri, A. O. A.) 107–117 (Springer, 1989).

  • 97.

    Meyer, H.-P., Minas, W. & Schmidhalter, D. Industrial Biotechnology (Wiley‐VCH, 2016).

  • 98.

    Wung, N., Acott, S. M., Tosh, D. & Ellis, M. J. Hollow fibre membrane bioreactors for tissue engineering applications. Biotechnol. Lett. 36, 2357–2366 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 99.

    Warnock, J. N., Bratch, K. & Al-Rubeai, M. in Bioreactors for Tissue Engineering: Principles, Design and Operation (eds Chaudhuri, J. & Al-Rubeai, M.) 87–113 (Springer, 2005).

  • 100.

    Morrow, D., Ussi, A. & Migliaccio, G. Addressing pressing needs in the development of advanced therapies. Front. Bioeng. Biotechnol. 5, 55 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 101.

    Moutsatsou, P., Ochs, J., Schmitt, R. H., Hewitt, C. J. & Hanga, M. P. Automation in cell and gene therapy manufacturing: from past to future. Biotechnol. Lett. 41, 1245–1253 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 102.

    Aamodt, J. M. & Grainger, D. W. Extracellular matrix-based biomaterial scaffolds and the host response. Biomaterials 86, 68–82 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 103.

    Garg, T. & Goyal, A. K. Biomaterial-based scaffolds – current status and future directions. Expert Opin. Drug Deliv. 11, 767–789 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 104.

    Karageorgiou, V. & Kaplan, D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26, 5474–5491 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 105.

    O’Brien, J. A. et al. Long-term histologic and mechanical results of a Permacol abdominal wall explant. Hernia 15, 211–215 (2011).

    PubMed 

    Google Scholar
     

  • 106.

    Owen, S. C. & Shoichet, M. S. Design of three-dimensional biomimetic scaffolds. J. Biomed. Mater. Res. Part A 94, 1321–1331 (2010).


    Google Scholar
     

  • 107.

    Cunha, A. G. & Gandini, A. Turning polysaccharides into hydrophobic materials: a critical review. Part 2: hemicelluloses, chitin/chitosan, starch, pectin and alginates. Cellulose 17, 1045–1065 (2010).

    CAS 

    Google Scholar
     

  • 108.

    Ben-Arye, T. et al. Textured soy protein scaffolds enable the generation of three-dimensional bovine skeletal muscle tissue for cell-based meat. Nat. Food 1, 210–220 (2020).


    Google Scholar
     

  • 109.

    Bugnicourt, E., Cinelli, P., Lazzeri, A. & Alvarez, V. A. Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. eXPRESS Polymer Lett. 8, 17 (2014).


    Google Scholar
     

  • 110.

    Modulevsky, D. J., Lefebvre, C., Haase, K., Al-Rekabi, Z. & Pelling, A. E. Apple derived cellulose scaffolds for 3D mammalian cell culture. PLoS ONE 9, e97835 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 111.

    Woodard, L. N. & Grunlan, M. A. Hydrolytic degradation and erosion of polyester biomaterials. ACS Macro Lett. 7, 976–982 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 112.

    de Boer, A. & Bast, A. Demanding safe foods – safety testing under the novel food regulation (2015/2283). Trends Food. Sci. Tech. 72, 125–133 (2018).


    Google Scholar
     

  • 113.

    Ben-Arye, T. & Levenberg, S. Tissue engineering for clean meat production. Front. Sustain. Food Syst. https://doi.org/10.3389/fsufs.2019.00046 (2019).

    Article 

    Google Scholar
     

  • 114.

    Koffler, J. et al. Improved vascular organization enhances functional integration of engineered skeletal muscle grafts. Proc. Natl Acad. Sci. USA 108, 14789–14794 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 115.

    Perry, L., Flugelman, M. Y. & Levenberg, S. Elderly patient-derived endothelial cells for vascularization of engineered muscle. Molec. Ther. 25, 935–948 (2017).

    CAS 

    Google Scholar
     

  • 116.

    Shandalov, Y. et al. An engineered muscle flap for reconstruction of large soft tissue defects. Proc. Natl Acad. Sci. USA 111, 6010–6015 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 117.

    Christov, C. et al. Muscle satellite cells and endothelial cells: close neighbors and privileged partners. Molec. Biol. Cell 18, 1397–1409 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 118.

    Guo, B. et al. Transcriptome analysis of cattle muscle identifies potential markers for skeletal muscle growth rate and major cell types. BMC Genomics 16, 177 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 119.

    Cao, Y. Angiogenesis modulates adipogenesis and obesity. J. Clin. Invest. 117, 2362–2368 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 120.

    Cao, Y. Angiogenesis and vascular functions in modulation of obesity, adipose metabolism, and insulin sensitivity. Cell Metab. 18, 478–489 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 121.

    Du, M., Wang, B., Fu, X., Yang, Q. & Zhu, M. J. Fetal programming in meat production. Meat Sci. 109, 40–47 (2015).

    PubMed 

    Google Scholar
     

  • 122.

    Varzaneh, F. E., Shillabeer, G., Wong, K. L. & Lau, D. C. W. Extracellular matrix components secreted by microvascular endothelial cells stimulate preadipocyte differentiation in vitro. Metabolism 43, 906–912 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • 123.

    Pullens, R. A., Stekelenburg, M., Baaijens, F. P. & Post, M. J. The influence of endothelial cells on the ECM composition of 3D engineered cardiovascular constructs. J. Tissue Engineer. Regen. Med. 3, 11–18 (2009).

    CAS 

    Google Scholar
     

  • 124.

    Levy-Mishali, M., Zoldan, J. & Levenberg, S. Effect of scaffold stiffness on myoblast differentiation. Tissue Eng. Part A 15, 935–944 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 125.

    Comley, K. & Fleck, N. A. The toughness of adipose tissue: measurements and physical basis. J. Biomech. 43, 1823–1826 (2010).

    PubMed 

    Google Scholar
     

  • 126.

    Swift, J. et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341, 1240104 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 127.

    Boonen, K. J. et al. Effects of a combined mechanical stimulation protocol: value for skeletal muscle tissue engineering. J. Biomech. 43, 1514–1521 (2010).

    PubMed 

    Google Scholar
     

  • 128.

    Powell, C. A., Smiley, B. L., Mills, J. & Vandenburgh, H. H. Mechanical stimulation improves tissue-engineered human skeletal muscle. Am. J. Physiol. 283, 1557–1565 (2002).


    Google Scholar
     

  • 129.

    Suman, S. P. & Joseph, P. Myoglobin chemistry and meat color. Annu. Rev. Food Sci. Technol. 4, 79–99 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 130.

    Post, M. J., Rahimi, N. & Caolo, V. Update on vascularization in tissue engineering. Regen. Med. 8, 759–770 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 131.

    Rouwkema, J., Rivron, N. C. & van Blitterswijk, C. A. Vascularization in tissue engineering. Trends Biotechnol. 26, 434–441 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 132.

    Grigoryan, B. et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science 364, 458–464 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 133.

    Formal Agreement Between the US Department of Health and Human Services Food and Drug Administration and US Department of Agriculture Office of Food Safety (USDA, 2019).

  • 134.

    Gottlieb, S. Statement from USDA Secretary Perdue and FDA Commissioner Gottlieb on the regulation of cell-cultured food products from cell lines of livestock and poultry. FDA https://www.fda.gov/news-events/press-announcements/statement-usda-secretary-perdue-and-fda-commissioner-gottlieb-regulation-cell-cultured-food-products (2018).

  • 135.

    Remarks Prepared for Delivery by Rosalyn Murphy-Jenkins, Director Labeling and Program Delivery Staff Office of Policy and Program Development USDA Food Safety and Inspection Service at the FDA Public Meeting for Horizontal Approaches to Food Standards of Identity Modernization September 27, 2019 (USDA, 2019).

  • 136.

    Regulation (EU) 2015/2283 of the European Parliament and of the Council (European Commission, 2015).

  • 137.

    Directive 2001/18/EC of the European Parliament and of the Council of 12 March 2001 on the Deliberate Release into the Environment of Genetically Modified Organisms and Repealing Council Directive 90/220/EEC (European Commission, 2001).

  • 138.

    Regulation (EC) No 1829/2003 of the European Parliament and of the Council of 22 September 2003 on Genetically Modified Food and Feed (European Commission, 2013).

  • 139.

    Commission Implementing Regulation (EU) 2017/2470 of 20 December 2017 Establishing the Union List of Novel Foods in Accordance with Regulation (EU) 2015/2283 of the European Parliament and of the Council on Novel Foods (European Commission, 2015).

  • 140.

    Regulation (EU) 2019/1381 of the European Parliament and of the Council of 20 June 2019 on the Transparency and Sustainability of the EU Risk Assessment in the Food Chain (European Commission, 2019).

  • 141.

    EFSA Panel on Dietetic Products, Nutrition and Allergies et al. Guidance on the preparation and presentation of an application for authorisation of a novel food in the context of Regulation (EU) 2015/2283. EFSA J. https://doi.org/10.2903/j.efsa.2016.4594 (2016).

  • 142.

    European Food Safety Authority. Administrative guidance on the submission of applications for authorisation of a novel food pursuant to Article 10 of Regulation (EU) 2015/2283. EFSA Support. Publ. https://doi.org/10.2903/sp.efsa.2018.EN-1381 (2018).

  • 143.

    Bryant, C. & Barnett, J. Consumer acceptance of cultured meat: a systematic review. Meat Sci. 143, 8–17 (2018).

    PubMed 

    Google Scholar
     

  • 144.

    Bryant, C. & Dillard, C. The impact of framing on acceptance of cultured meat. Front. Nutr. 6, 103 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 145.

    Dutch People Wouldn’t Mind Trying the “Cultivated Burger” (Flycatcher, 2017); http://www.flycatcherpanel.nl/news/item/nwsA1697/media/images/Resultaten_onderzoek_kweekvlees.pdf

  • 146.

    Wilks, M. & Phillips, C. J. Attitudes to in vitro meat: a survey of potential consumers in the United States. PLoS ONE 12, e0171904 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 147.

    Smith, A. U.S. views of technology and the future: science in the next 50 years. Pew Research Center (17 April 2014).

  • 148.

    Tatum, M. Meat the future… and how to market it. The Grocer (6 January 2017).

  • 149.

    Bekker, G. A., Fischer, A. R. H., Tobi, H. & van Trijp, H. C. M. Explicit and implicit attitude toward an emerging food technology: the case of cultured meat. Appetite 108, 245–254 (2017).

  • 150.

    Siegrist, M., Sütterlin, B. & Hartmann, C. Perceived naturalness and evoked disgust influence acceptance of cultured meat. Meat Sci. 139, 213–219 (2018).

    PubMed 

    Google Scholar
     

  • 151.

    Slade, P. If you build it, will they eat it? Consumer preferences for plant-based and cultured meat burgers. Appetite 125, 428–437 (2018).

    PubMed 

    Google Scholar
     

  • 152.

    Bryant, C., Szejda, K., Parekh, N., Desphande, V. & Tse, B. A Survey of consumer perceptions of plant-based and clean meat in the USA, India, and China. Front. Sustain. Food Syst. 3, 11 (2019).


    Google Scholar
     

  • 153.

    Wilks, M., Phillips, C. J. C., Fielding, K. & Hornsey, M. J. Testing potential psychological predictors of attitudes towards cultured meat. Appetite 136, 137–145 (2019).

    PubMed 

    Google Scholar
     

  • 154.

    Tucker, C. A. The significance of sensory appeal for reduced meat consumption. Appetite 81, 168–179 (2014).

    PubMed 

    Google Scholar
     

  • 155.

    Verbeke, W., Sans, P. & Van Loo, E. J. Challenges and prospects for consumer acceptance of cultured meat. J. Integrat. Agri. 14, 285–294 (2015).


    Google Scholar
     

  • 156.

    Goodwin, J. N. & Shoulders, C. W. The future of meat: a qualitative analysis of cultured meat media coverage. Meat Sci. 95, 445–450 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 157.

    McCrae, R. R. et al. Age differences in personality across the adult life span: parallels in five cultures. Dev. Psychol. 35, 466–477 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 158.

    Lea, E. & Worsley, A. Benefits and barriers to the consumption of a vegetarian diet in Australia. Public Health Nutr. 6, 505–511 (2003).

    PubMed 

    Google Scholar
     

  • 159.

    Fessler, D. M. T., Arguello, A. P., Mekdara, J. M. & Macias, R. Disgust sensitivity and meat consumption: a test of an emotivist account of moral vegetarianism. Appetite 41, 31–41 (2003).

    PubMed 

    Google Scholar
     

  • 160.

    Rozin, P., Markwith, M. & Stoess, C. Moralization and becoming a vegetarian: the transformation of preferences into values and the recruitment of disgust. Psychol. Sci. 8, 67–73 (1997).


    Google Scholar
     

  • 161.

    Social Values, Science and Technology (European Commission, 2005).

  • 162.

    Nearly One in Three Consumers Willing to Eat Lab-Grown Meat, According to New Research (Surveygoo, 2018); https://www.datasmoothie.com/@surveygoo/nearly-one-in-three-consumers-willing-to-eat-lab-g/

  • 163.

    Marcu, A. et al. Analogies, metaphors, and wondering about the future: lay sense-making around synthetic meat. Public Understand. Sci. 24, 547–562 (2015).


    Google Scholar
     

  • 164.

    Regulation (EC) No 853/2004 of the European Parliament and of the Council of 29 April 2004 Laying Down Specific Hygiene Rules for Food of Animal Origin (European Commission, 2004).

  • 165.

    Warenwetbesluit Hygiëne van Levensmiddelen (Overheid, 2019); https://wetten.overheid.nl/BWBR0018823/2016-02-19

  • 166.

    Warenwetbesluit Bereiding en Behandeling van Levensmiddelen (Overheid, 2019); https://wetten.overheid.nl/BWBR0005758/2016-10-06

  • 167.

    Regulation (EU) 2017/625 of the European Parliament and of the Council (European Commission, 2017).

  • 168.

    Regulation (EC) No 178/2002 of the European Parliament and of the Council (European Commission, 2002).

  • 169.

    Would You Eat Artificial Meat? (YouGov, 2012); https://yougov.co.uk/topics/consumer/articles-reports/2012/03/12/would-you-eat-artifical-meat



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *