Segmented flow generator for serial crystallography at the European X-ray free electron laser


  • 1.

    Bowman, S. E., Bridwell-Rabb, J. & Drennan, C. L. Metalloprotein crystallography: more than a structure. Acc. Chem. Res. 49, 695–702 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Chapman, H. N. et al. Femtosecond X-ray protein nanocrystallography. Nature 470, 73–77 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Andersson, R. et al. Serial femtosecond crystallography structure of cytochrome c oxidase at room temperature. Sci. Rep. 7, 4518 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Pande, K. et al. Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science 352, 725–729 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Coquelle, N. et al. Chromophore twisting in the excited state of a photoswitchable fluorescent protein captured by time-resolved serial femtosecond crystallography. Nat. Chem. 10, 31–37 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Barends, T. R. et al. Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation. Science 350, 445–450 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Suga, M. et al. Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL. Nature 543, 131–135 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Wickstrand, C. et al. Bacteriorhodopsin: structural insights revealed using X-ray lasers and synchrotron radiation. Annu. Rev. Biochem. 88, 59–83 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Nass Kovacs, G. et al. Three-dimensional view of ultrafast dynamics in photoexcited bacteriorhodopsin. Nat. Commun. 10, 3177–3177 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Kern, J. et al. Structures of the intermediates of Kok’s photosynthetic water oxidation clock. Nature 563, 421–425 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Nogly, P. et al. Retinal isomerization in bacteriorhodopsin captured by a femtosecond x-ray laser. Science 361, eaat0094 (2018).

    PubMed 

    Google Scholar
     

  • 12.

    Nango, E. et al. A three-dimensional movie of structural changes in bacteriorhodopsin. Science 354, 1552–1557 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Johansson, L. C., Stauch, B., Ishchenko, A. & Cherezov, V. A bright future for serial femtosecond crystallography with XFELs. Trends Biochem. Sci. 42, 749–762 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Martin-Garcia, J. M., Conrad, C. E., Coe, J., Roy-Chowdhury, S. & Fromme, P. Serial femtosecond crystallography: a revolution in structural biology. Arch. Biochem. Biophys. 602, 32–47 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Wiedorn, M. O. et al. Rapid sample delivery for megahertz serial crystallography at X-ray FELs. IUCrJ 5, 574–584 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Wiedorn, M. O. et al. Megahertz serial crystallography. Nat. Commun. 9, 4025 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Weierstall, U., Spence, J. C. & Doak, R. B. Injector for scattering measurements on fully solvated biospecies. Rev. Sci. Instrum. 83, 035108 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Oberthuer, D. et al. Double-flow focused liquid injector for efficient serial femtosecond crystallography. Sci. Rep. 7, 44628 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Grunbein, M. L. et al. Megahertz data collection from protein microcrystals at an X-ray free-electron laser. Nat. Commun. 9, 3487 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Knoška, J. et al. Ultracompact 3D microfluidics for time-resolved structural biology. Nat. Commun. 11, 657 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Conrad, C. E. et al. A novel inert crystal delivery medium for serial femtosecond crystallography. IUCrJ 2, 421–430 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Weierstall, U. et al. Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nat. Commun. 5, 3309 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Echelmeier, A., Sonker, M. & Ros, A. Microfluidic sample delivery for serial crystallography using XFELs. Anal. Bioanal. Chem. 25, 6535–6547 (2019).


    Google Scholar
     

  • 24.

    Hunter, M. S. et al. Fixed-target protein serial microcrystallography with an x-ray free electron laser. Sci. Rep. 4, 6026–6026 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Roedig, P. et al. A micro-patterned silicon chip as sample holder for macromolecular crystallography experiments with minimal background scattering. Sci. Rep. 5, https://doi.org/10.1038/srep10451 (2015).

  • 26.

    Sherrell, D. A. et al. A modular and compact portable mini‐endstation for high‐precision, high‐speed fixed target serial crystallography at FEL and synchrotron sources. J. Synchrotron Radiat. 22, 1372–1378 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Roedig, P. et al. Room-temperature macromolecular crystallography using a micro-patterned silicon chip with minimal background scattering. J. Appl. Crystallogr. 49, 968–975 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Oghbaey, S. et al. Fixed target combined with spectral mapping: approaching 100% hit rates for serial crystallography. Acta Crystallogr. Sect. D. 72, 944–955 (2016).

    CAS 

    Google Scholar
     

  • 29.

    Owen, R. L. et al. Low‐dose fixed‐target serial synchrotron crystallography. Acta Crystallogr. Sect. D. 73, 373–378 (2017).

    CAS 

    Google Scholar
     

  • 30.

    Sierra, R. G. et al. Nanoflow electrospinning serial femtosecond crystallography. Acta Crystallogr. Sect. D. 68, 1584–1587 (2012).

    CAS 

    Google Scholar
     

  • 31.

    Sierra, R. G. et al. Concentric-flow electrokinetic injector enables serial crystallography of ribosome and photosystem II. Nat. Methods 13, 59–62 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Cheng, R. K. Y. Towards an optimal sample delivery method for serial crystallography at XFEL. Crystals 10, 215 (2020).

    CAS 

    Google Scholar
     

  • 33.

    Srajer, V. & Schmidt, M. Watching proteins function with time-resolved X-ray crystallography. J. Phys. D. Appl Phys. 50, 373001 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Roessler, C. G. et al. Acoustic injectors for drop-on-demand serial femtosecond crystallography. Structure 24, 631–640 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Fuller, F. D. et al. Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers. Nat. Methods 14, 443–449 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Young, D. I. et al. Structure of photosystem II and substrate binding at room temperature. Nature 540, 453–457 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Mehrabi, P. et al. Liquid application method for time-resolved analyses by serial synchrotron crystallography. Nat. Methods 16, 979–982 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Mafune, F. et al. Microcrystal delivery by pulsed liquid droplet for serial femtosecond crystallography. Acta Crystallogr. D. 72, 520–523 (2016).

    CAS 

    Google Scholar
     

  • 39.

    Emma, P. et al. First lasing and operation of an angstrom-wavelength free-electron laser. Nat. Photon. 4, 641–647 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 40.

    Tono, K. et al. Beamline, experimental stations and photon beam diagnostics for the hard x-ray free electron laser of SACLA. New J. Phys. 15, https://doi.org/10.1088/1367-2630/15/8/083035 (2013).

  • 41.

    Park, J., Kim, S., Nam, K. H., Kim, B. & Ko, I. S. Current status of the CXI beamline at the PAL-XFEL. J. Korean Phys. Soc. 69, 1089–1093 (2016).

    ADS 

    Google Scholar
     

  • 42.

    Milne, C. J. et al. SwissFEL: the Swiss X-ray free electron laser. Appl. Sci. 7, 720 (2017).


    Google Scholar
     

  • 43.

    Weierstall, U. Liquid sample delivery techniques for serial femtosecond crystallography. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130337 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Echelmeier, A. et al. 3D printed droplet generation devices for serial femtosecond crystallography enabled by surface coating. J. Appl. Crystallogr 52, 997–1008 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Schulz, J. et al. A versatile liquid-jet setup for the European XFEL. J. Synchrotron Radiat. 26, 339–345 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Allahgholi, A. et al. The adaptive gain integrating pixel detector at the European XFEL. J. Synchrotron Radiat. 26, 74–82 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Yefanov, O. et al. Evaluation of serial crystallographic structure determination within megahertz pulse trains. Struct. Dyn. 6, 064702 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Zhang, S. H., Guivier-Curien, C., Veesler, S. & Candoni, N. Prediction of sizes and frequencies of nanoliter-sized droplets in cylindrical T-junction microfluidics. Chem. Eng. Sci. 138, 128–139 (2015).

    CAS 

    Google Scholar
     

  • 49.

    Xu, J. H., Li, S. W., Tan, J. & Luo, G. S. Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping. Microfluid. Nanofluid. 5, 711–717 (2008).

    CAS 

    Google Scholar
     

  • 50.

    Christopher, G. F., Noharuddin, N. N., Taylor, J. A. & Anna, S. L. Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78, 036317 (2008).

    PubMed 

    Google Scholar
     

  • 51.

    Gupta, A. & Kumar, R. Flow regime transition at high capillary numbers in a microfluidic T-junction: viscosity contrast and geometry effect. Phys. Fluids 22, 122001 (2010).

    ADS 

    Google Scholar
     

  • 52.

    Wehking, J. D., Gabany, M., Chew, L. & Kumar, R. Effects of viscosity, interfacial tension, and flow geometry on droplet formation in a microfluidic T-junction. Microfluid. Nanofluid. 16, 441–453 (2014).

    CAS 

    Google Scholar
     

  • 53.

    Gañán-Calvo, A. M. Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams. Phys. Rev. Lett. 80, 285–288 (1998).

    ADS 

    Google Scholar
     

  • 54.

    Jonsson, H. O., Caleman, C., Andreasson, J. & Timneanu, N. Hit detection in serial femtosecond crystallography using X-ray spectroscopy of plasma emission. IUCrJ 4, 778–784 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    White, T. A. et al. CrystFEL: a software suite for snapshot serial crystallography. J. Appl. Crystallogr. 45, 335–341 (2012).

    CAS 

    Google Scholar
     

  • 56.

    Vainer, R., Belakhov, V., Rabkin, E., Baasov, T. & Adir, N. Crystal structures of Escherichia coli KDO8P synthase complexes reveal the source of catalytic irreversibility. J. Mol. Biol. 351, 641–652 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 57.

    Radaev, S., Dastidar, P., Patel, M., Woodard, R. W. & Gatti, D. L. Structure and mechanism of 3-deoxy-D-manno-octulosonate 8-phosphate synthase. J. Biol. Chem. 275, 9476–9484 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    Coe, J. Life in motion: visualizing biomacromolecules by time-resolved serial femtosecond crystallography. In: Center for Applied Structural Discovery. The Biodesign Institute (Arizona State University, 2018).

  • 59.

    Lomb, L. et al. An anti-settling sample delivery instrument for serial femtosecond crystallography. J. Appl. Crystallogr. 45, 674–678 (2012).

    CAS 

    Google Scholar
     

  • 60.

    Liu, W. et al. Serial femtosecond crystallography of G protein-coupled receptors. Science 342, 1521–1524 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 61.

    Pandey, S. et al. Time-resolved serial femtosecond crystallography at the European XFEL. Nat. Methods 17, 73–78 (2020).

    PubMed 

    Google Scholar
     

  • 62.

    Kim, D. et al. Electric triggering for enhanced control of droplet generation. Anal. Chem. 91, 9792–9799 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 63.

    Ishigami, I. et al. Snapshot of an oxygen intermediate in the catalytic reaction of cytochrome c oxidase. Proc. Natl Acad. Sci. USA 116, 3572 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 64.

    Conrad, C. E. Overcoming Barriers in Structural Biology Through Method Development of Serial Crystallography. (Arizona State University, 2016).

  • 65.

    Kupitz, C. et al. Microcrystallization techniques for serial femtosecond crystallography using photosystem II from Thermosynechococcus elongatus as a model system. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130316 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 66.

    Gisriel, C. et al. Membrane protein megahertz crystallography at the European XFEL. Nat. Commun. 10, 5021 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 67.

    Mancuso, A. P. et al. The single particles, clusters and biomolecules and serial femtosecond crystallography instrument of the European XFEL: initial installation. J. Synchrotron Radiat. 26, 660–676 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 68.

    Geloni, G. et al. Coherence properties of the European XFEL. N. J. Phys. 12, 035021 (2010).


    Google Scholar
     

  • 69.

    Boukhelef, D., Szuba, J., Wrona, K. & Youngman, C. Software development for high speed data recording and processing. CALEPCS2013 (2013).

  • 70.

    Fangohr, H. et al. Data Analysis support in Karabo at European XFEL. In: 16th International Conference on Accelerator and Large Experimental Control Systems) (JACoW Publishing, 2017).

  • 71.

    Barty, A. et al. Cheetah: software for high-throughput reduction and analysis of serial femtosecond X-ray diffraction data. J. Appl .Crystallogr. 47, 1118–1131 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 72.

    Gevorkov, Y. et al. XGANDALF–extended gradient descent algorithm for lattice finding. Acta Crystallogr. Sect. A 74, 694–704 (2019).

  • 73.

    Duisenberg, A. J. M. Indexing in single-crystal diffractometry with an obstinate list of reflections. J. Appl. Crystallogr. 25, 92–96 (1992).

    CAS 

    Google Scholar
     

  • 74.

    Powell, H. R., Johnson, O. & Leslie, A. G. Autoindexing diffraction images with iMosflm. Acta Crystallogr. D. Biol. Crystallogr. 69, 1195–1203 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 75.

    Kabsch, W. Xds. Acta Crystallogr. D. Biol. Crystallogr. 66, 125–132 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 76.

    White, T. A. et al. Recent developments in CrystFEL. J. Appl. Crystallogr. 49, 680–689 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 77.

    White, T. A. Processing serial crystallography data with CrystFEL: a step-by-step guide. Acta Crystallogr. D. Struct. Biol. 75, 219–233 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 78.

    Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D. Biol. Crystallogr. 67, 235–242 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 79.

    McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 80.

    Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D. Biol. Crystallogr. 67, 355–367 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 81.

    Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D. Biol. Crystallogr. 66, 486–501 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 82.

    Joosten, R. P., Long, F., Murshudov, G. N. & Perrakis, A. The PDB_REDO server for macromolecular structure model optimization. IUCrJ 1, 213–220 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 83.

    Joosten, R. P., Joosten, K., Murshudov, G. N. & Perrakis, A. PDB_REDO: constructive validation, more than just looking for errors. Acta Crystallogr. D. Biol. Crystallogr. 68, 484–496 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 84.

    Schrödinger, L. L. C. The PyMOL Molecular Graphics System, Version~1.8. (2015).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *