Silylium ion mediated 2+2 cycloaddition leads to 4+2 Diels-Alder reaction products


  • 1.

    Jiang, X. & Wang, R. Recent developments in catalytic asymmetric inverse-electron-demand Diels–Alder reaction. Chem. Rev. 113, 5515–5546 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Glinkerman, C. M. & Boger, D. L. Catalysis of heterocyclic azadiene cycloaddition reactions by solvent hydrogen bonding: concise total synthesis of methoxatin. J. Am. Chem. Soc. 138, 12408–12413 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Kessler, S. N. & Wegner, H. A. Lewis acid catalyzed inverse electron-demand Diels− Alder reaction of 1, 2-diazines. Org. Lett. 12, 4062–4065 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Png, Z. M., Zeng, H., Ye, Q. & Xu, J. Inverse-electron-demand Diels-Alder reactions: principles and applications. Chem. Asian J. 12, 2142–2159 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Duret, G., Le Fouler, V., Bisseret, P., Bizet, V. & Blanchard, N. Diels-Alder and formal Diels-Alder cycloaddition reactions of ynamines and ynamides. Eur. J. Org. Chem. 2017, 6816–6830 (2017).

    CAS 

    Google Scholar
     

  • 6.

    Duret, G. et al. Inverse electron-demand [4+2]-cycloadditions of ynamides: access to novel pyridine scaffolds. Org. Lett. 18, 1610–1613 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Smith, M. W. & Baran, P. S. As simple as 2+2. Science 349, 925–926 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Hoyt, J. M., Schmidt, V. A., Tondreau, A. M. & Chirik, P. J. ORGANIC CHEMISTRY iron-catalyzed intermolecular 2+2 cycloadditions of unactivated alkenes. Science 349, 960–963 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Bender, C. O., Dolman, D., Foesier, J. C., Lawson, S. L. & Preuss, K. E. The differing mechanisms of photo-formation of 7-cyanobenzocyclooctatetraene from 7- and 6-cyano-2,3-benzobicyclo[4.2.0]octa-2,4,7-triene. Can. J. Chem. 81, 37–44 (2003).

    CAS 

    Google Scholar
     

  • 10.

    Deslongchamps, G. & Deslongchamps, P. Bent Bonds (tau) and the antiperiplanar hypothesis-the chemistry of cyclooctatetraene and other C8H8 isomers. J. Org. Chem. 83, 5751–5755 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Huang, Z., Zhang, W. X. & Xi, Z. Lewis acid-promoted ring-contraction of 2,4,6,8-tetrasubstituted 1,5-diazacyclooctatetraenes to 2,4,6-trisubstituted pyridines. Org. Lett. 20, 485–488 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Oishi, E. et al. Condensed pyridazines .8. Reaction of diazolopyridazines with ynamine – formation of benzodiazoles and diazolodiazocines. Chem. Pharm. Bull. 39, 1713–1718 (1991).

    CAS 

    Google Scholar
     

  • 13.

    Iwamoto, K., Suzuki, S., Oishi, E., Miyashita, A. & Higashino, T. Ring transformation of fused pyridazines .4. Reaction of halo-substituted fused pyridazines with ynamines. Heterocycles 43, 199–204 (1996).

    CAS 

    Google Scholar
     

  • 14.

    Hoffmann, R. & Woodward, R. B. Conservation of orbital symmetry. Acc. Chem. Res. 1, 17–22 (1968).

    CAS 

    Google Scholar
     

  • 15.

    Turkmen, Y. E., Montavon, T. J., Kozmin, S. A. & Rawal, V. H. Silver-catalyzed formal inverse electron-demand Diels-Alder reaction of 1,2-diazines and siloxy alkynes. J. Am. Chem. Soc. 134, 9062–9065 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Sumaria, C. S., Turkmen, Y. E. & Rawal, V. H. Non-precious metals catalyze formal [4+2] cycloaddition reactions of 1,2-diazines and siloxyalkynes under ambient conditions. Org. Lett. 16, 3236–3239 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Avcı, Ö. N., Catak, S., Dereli, B., Aviyente, V. & Dedeoglu, B. Elucidation of the mechanism of silver-catalyzed inverse electron-demand Diels-Alder (IEDDA) reaction of 1,2-diazines and siloxy alkynes. ChemCatChem 12, 366–372 (2020).


    Google Scholar
     

  • 18.

    Fang, G. & Bi, X. Silver-catalysed reactions of alkynes: recent advances. Chem. Soc. Rev. 44, 8124–8173 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Rode, N. D. et al. Synthesis of 2-Acylindoles via Ag- and Cu-Catalyzed anti-Michael Hydroamination of beta-(2-Aminophenyl)-alpha,beta-ynones: experimental Results and DFT Calculations. J. Org. Chem. 83, 6354–6362 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Royes, J. et al. Copper-catalyzed borylative ring closing C–C coupling toward spiro- and dispiroheterocycles. ACS Catal. 8, 2833–2838 (2018).

    CAS 

    Google Scholar
     

  • 21.

    Douvris, C. & Ozerov, O. V. Hydrodefluorination of perfluoroalkyl groups using silylium-carborane catalysts. Science 321, 1188–1190 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Kim, K. C. et al. Crystallographic evidence for a free silylium ion. Science 297, 825–827 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Lambert, J. B., Zhang, S. H., Stern, C. L. & Huffman, J. C. Crystal-structure of a silyl cation with no coordination to anion and distant coordination to solvent. Science 260, 1917–1918 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Popov, S. et al. Teaching an old carbocation new tricks: Intermolecular C–H insertion reactions of vinyl cations. Science 361, 381–387 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Reed, C. A., Xie, Z. W., Bau, R. & Benesi, A. Closely approaching the silylium ion (R3SI+). Science 262, 402–404 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Shao, B., Bagdasarian, A. L., Popov, S. & Nelson, H. M. Arylation of hydrocarbons enabled by organosilicon reagents and weakly coordinating anions. Science 355, 1403–1407 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Wu, Q. et al. Characterization of hydrogen-substituted silylium ions in the condensed phase. Science 365, 168–172 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Lee, V. Y. Tricoordinate silyl cations (silylium ions). Russ. Chem. Rev. 88, 351–369 (2019) 

  • 29.

    Dias, H. V. R., Flores, J. A., Wu, J. & Kroll, P. Monomeric copper(I), silver(I), and gold(I) alkyne complexes and the coinage metal family group trends. J. Am. Chem. Soc. 131, 11249–11255 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Sweis, R. F., Schramm, M. P. & Kozmin, S. A. Silver-catalyzed 2+2 cycloadditions of siloxy alkynes. J. Am. Chem. Soc. 126, 7442–7443 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Hu, L. & Chen, H. Substrate-dependent two-state reactivity in iron-catalyzed alkene [2+2] cycloaddition reactions. J. Am. Chem. Soc. 139, 15564–15567 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Tao, J. Y., Fang, D. C. & Chass, G. A. Simplification through complexity: the role of Ni-complexes in catalysed diyne-cyclobutanone [4+2+2] cycloadditions, a comparative DFT study. Phys. Chem. Chem. Phys. 14, 6937–6945 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Mueller, T. In Functional Molecular Silicon Compounds I: Regular Oxidation States Vol. 155 Structure and Bonding (ed. Scheschkewitz, D.) 107–162 (Springer, 2014).

  • 34.

    Yang, Y. F., Liang, Y., Liu, F. & Houk, K. N. Diels-Alder reactivities of benzene, pyridine, and di-, tri-, and tetrazines: the roles of geometrical distortions and orbital interactions. J. Am. Chem. Soc. 138, 1660–1667 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Yang, Y. F., Yu, P. & Houk, K. N. Computational exploration of concerted and zwitterionic mechanisms of Diels-Alder reactions between 1,2,3-triazines and enamines and acceleration by hydrogen-bonding solvents. J. Am. Chem. Soc. 139, 18213–18221 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Couchman, S. A., Thompson, T. K., Wilson, D. J., Dutton, J. L. & Martin, C. D. Investigating the ring expansion reaction of pentaphenylborole and an azide. Chem. Commun. 50, 11724–11726 (2014).

    CAS 

    Google Scholar
     

  • 37.

    Eisch, J. J., Liu, W., Zhu, L. & Rheingold, A. L. Facile rearrangement of the 6,11-diphenyldibenzo[b,f][1,4]diazocine skeleton into a substituted 2-(2-aminophenyl)-1,3-diphenylisoindole via anomalous carbo­lithiation or hydrolithiation: corroboration of operative SET processes. Eur. J. Org. Chem. 2015, 7384–7394 (2015).

    CAS 

    Google Scholar
     

  • 38.

    Zhang, S., Zhang, W. X. & Xi, Z. Semibullvalene and diazasemibullvalene: recent advances in the synthesis, reaction chemistry, and synthetic applications. Acc. Chem. Res. 48, 1823–1831 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Gaussian 16, Revision B.01, Frisch, M. J. et al. Gaussian, Inc., Wallingford CT, 2016.

  • 40.

    Zhao, Y. & Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008).

    CAS 

    Google Scholar
     

  • 41.

    Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. PCCP 7, 3297–3305 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Binkley, J. S., Pople, J. A. & Hehre, W. J. Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements. J. Am. Chem. Soc. 102, 939–947 (1980).

    CAS 

    Google Scholar
     

  • 43.

    Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    PubMed 

    Google Scholar
     

  • 44.

    Fukui, K. The path of chemical reactions – the IRC approach. Acc. Chem. Res. 14, 363–368 (1981).

    CAS 

    Google Scholar
     

  • 45.

    Barone, V. & Cossi, M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem. A 102, 1995–2001 (1998).

    CAS 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *