Single-molecule visualization of DNA G-quadruplex formation in live cells


  • 1.

    Sen, D. & Gilbert, W. Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature 334, 364–366 (1988).

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Hänsel-Hertsch, R., Di Antonio, M. & Balasubramanian, S. DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential. Nat. Rev. Mol. Cell Biol. 18, 279–284 (2017).

    Article 

    Google Scholar
     

  • 3.

    Chambers et al. High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat. Biotechnol. 33, 877–881 (2015).

    Article 

    Google Scholar
     

  • 4.

    Schaffitzel, C. et al. In vitro generated antibodies specific for telomeric guanine-quadruplex DNA react with Stylonychia lemnae macronuclei. Proc. Natl Acad. Sci. USA 98, 8572–8577 (2001).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Biffi, G., Tannahill, D., McCafferty, J. & Balasubramanian, S. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat. Chem. 3, 182–186 (2013).

    Article 

    Google Scholar
     

  • 6.

    Hänsel-Hertsch, R. et al. G-quadruplex structures mark human regulatory chromatin. Nat. Genet. 48, 1267–1272 (2016).

    Article 

    Google Scholar
     

  • 7.

    Chen, X. C. et al. Tracking the dynamic folding and unfolding of RNA G-quadruplexes in live cells. Angew. Chem. Int. Ed. 57, 4702–4706 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Laguerre, A. et al. Visualization of RNA G-quadruplexes in live cells. J. Am. Chem. Soc. 137, 8521–8525 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Zhang, S. et al. Real-time monitoring of DNA G-quadruplexes in living cells with a small-molecule fluorescent probe. Nucleic Acids Res. 46, 7522–7532 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Shivalingam, A. et al. The interactions between a small-molecule and G-quadruplexes are visualized by fluorescence lifetime imaging microscopy. Nat. Commun. 6, 8178 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Lukinavičius, G. et al. A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. Nat. Chem. 5, 132–139 (2013).

    Article 

    Google Scholar
     

  • 12.

    Rodriguez, R. et al. A novel small molecule that alters shelterin integrity and triggers a DNA-damage response at telomeres. J. Am. Chem. Soc. 130, 15758–15759 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    De Cian, A., Delemos, E., Mergny, J. L., Teulade-Fichou, M. P. & Monchaud, D. Highly efficient G-quadruplex recognition by bisquinolinium compounds. J. Am. Chem. Soc. 129, 1856–1857 (2007).

    Article 

    Google Scholar
     

  • 14.

    Ying, L., Green, J. J., Li, H., Klenerman, D. & Balasubramanian, S. Studies on the structure and dynamics of the human telomeric G-quadruplex by single-molecule fluorescence resonance energy transfer. Proc. Natl Acad. Sci. USA 100, 14629–14634 (2003).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Tokunaga, M., Imamoto, N. & Sakata-Sogawa, K. Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat. Methods 5, 159–161 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Etheridge, T. J. et al. Quantification of DNA-associated proteins inside eukaryotic cells using single-molecule localization microscopy. Nucleic Acids Res. 42, e146 (2014).

    Article 

    Google Scholar
     

  • 17.

    Guo, J. U. & Bartel, D. P. RNA G-quadruplexes are globally unfolded in eukaryotic cells and depleted in bacteria. Science 353, aaf537 (2016).

    Article 

    Google Scholar
     

  • 18.

    Rodriguez, R. et al. Small-molecule-induced DNA damage identifies alternative DNA structures in human genes. Nat. Chem. Biol. 8, 301–310 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Chandradoss, S. D. et al. Surface passivation for single-molecule protein studies. J. Vis. Exp. 86, 50549 (2014).


    Google Scholar
     

  • 20.

    Tinevez, J.-Y. et al. TrackMate: an open and extensible platform for single-particle tracking. Methods 115, 80–90 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Ponjavic, A. et al. Single-molecule light-sheet imaging of suspended T cells. Biophys. J. 114, 2200–2211 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Ponjavic, A., Ye, Y., Laue, E., Lee, S. F. & Klenerman, D. Sensitive light-sheet microscopy in multiwell plates using an AFM cantilever. Biomed. Opt. Express 9, 5863–5880 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Chen, J. et al. Single-molecule dynamics of enhanceosome assembly in embryonic stem cells. Cell 156, 1274–1285 (2014).

    CAS 
    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *