South China Sea documents the transition from wide continental rift to continental break up


  • 1.

    Buck, W. R. Modes of continental lithospheric extension. J. Geophys. Res. Solid Earth 96, 20161–20178 (1991).


    Google Scholar
     

  • 2.

    Brun, J. P. Narrow rifts versus wide rifts: inferences for the mechanics of rifting from laboratory experiments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 357, 695–712 (1999).

    ADS 

    Google Scholar
     

  • 3.

    Buck, W. R. In Treatise on Geophysics (ed. Schubert, G.) 325–379 (Elsevier, 2015).

  • 4.

    Jolivet, L. & Brun, J.-P. Cenozoic geodynamic evolution of the Aegean. Int. J. Earth Sci. 99, 109–138 (2010).

    CAS 

    Google Scholar
     

  • 5.

    Whitney, D. L., Teyssier, C., Rey, P. & Buck, W. R. Continental and oceanic core complexes. Geol. Soc. Am. Bull. 125, 273–298 (2013).

    ADS 

    Google Scholar
     

  • 6.

    Wernicke, B. In The Cordilleran Orogen (eds. Burchfiel, B. C., Lipman, P. W. & Zoback, M. L.) 553–581 (Geological Society of America, Geology of North America, 1992).

  • 7.

    Clerc, C., Ringenbach, J.-C., Jolivet, L. & Ballard, J.-F. Rifted margins: ductile deformation, boudinage, continentward-dipping normal faults and the role of the weak lower crust. Gondwana Res. 53, 20–40 (2018).

    ADS 

    Google Scholar
     

  • 8.

    Jolivet, L. et al. Extensional crustal tectonics and crust-mantle coupling, a view from the geological record. Earth-Sci. Rev. 185, 1187–1209 (2018).

    ADS 

    Google Scholar
     

  • 9.

    Huismans, R. & Beaumont, C. Depth-dependent extension, two-stage breakup and cratonic underplating at rifted margins. Nature 473, 74–78 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Brun, J.-P. et al. Crustal versus mantle core complexes. Tectonophysics 746, 22–45 (2018).

    ADS 

    Google Scholar
     

  • 11.

    Platt, J. P., Behr, W. M. & Cooper, F. J. Metamorphic core complexes: windows into the mechanics and rheology of the crust. J. Geol. Soc. Lond. 172, 9–27 (2015).

    CAS 

    Google Scholar
     

  • 12.

    Rey, P. F., Teyssier, C. & Whitney, D. L. Extension rates, crustal melting, and core complex dynamics. Geology 37, 391–394 (2009).

    ADS 

    Google Scholar
     

  • 13.

    Pérez-Gussinyé, M. & Reston, T. J. Rheological evolution during extension at nonvolcanic rifted margins: onset of serpentinization and development of detachments leading to continental breakup. J. Geophys. Res. Solid Earth 106, 3961–3975 (2001).


    Google Scholar
     

  • 14.

    Pérez-Gussinyé, M., Ranero, C. R., Reston, T. J. & Sawyer, D. Mechanisms of extension at nonvolcanic margins: rvidence from the Galicia interior basin, west of Iberia. J. Geophys. Res. Solid Earth 108, 1–19 (2003).


    Google Scholar
     

  • 15.

    Ranero, C. R. & Pérez-Gussinyé, M. Sequential faulting explains the asymmetry and extension discrepancy of conjugate margins. Nature 468, 294–299 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Peron-Pinvidic, G., Manatschal, G. & Osmundsen, P. T. Structural comparison of archetypal Atlantic rifted margins: a review of observations and concepts. Mar. Pet. Geol. 43, 21–47 (2013).


    Google Scholar
     

  • 17.

    Manatschal, G. New models for evolution of magma-poor rifted margins based on a review of data and concepts from West Iberia and the Alps. Int. J. Earth Sci. 93, 432–466 (2004).


    Google Scholar
     

  • 18.

    Little, T. A., Baldwin, S. L., Fitzgerald, P. G. & Monteleone, B. Continental rifting and metamorphic core complex formation ahead of the Woodlark spreading ridge, D’Entrecasteaux Islands, Papua New Guinea. Tectonics 26, 1–26 (2007).


    Google Scholar
     

  • 19.

    Little, T. A. et al. Diapiric exhumation of Earth’s youngest (UHP) eclogites in the gneiss domes of the D’Entrecasteaux Islands, Papua New Guinea. Tectonophysics 510, 39–68 (2011).

    ADS 

    Google Scholar
     

  • 20.

    Pérez-Gussinyé, M., Reston, T. J. & Morgan, J. P. Serpentinization and magmatism during extension at non-volcanic margins: the effect of initial lithospheric structure. Geol. Soc. Spec. Publ. 187, 551–576 (2001).

    ADS 

    Google Scholar
     

  • 21.

    Ros, E. et al. Lower crustal strength controls on melting and serpentinization at magma-poor margins: potential implications for the South. Atl. Geochem. Geophys. Geosyst. 18, 4538–4557 (2017).

    ADS 

    Google Scholar
     

  • 22.

    Peron-Pinvidic, G. & Manatschal, G. Rifted margins: state of the art and future challenges. Front. Earth Sci. 7, 1–8 (2019).


    Google Scholar
     

  • 23.

    Wernicke, B. Uniform-sense normal simple shear of the continental lithosphere. Can. J. Earth Sci. 22, 108–125 (1985).

    ADS 

    Google Scholar
     

  • 24.

    Jones, C. H. et al. Variations across and along a major continental rift: an interdisciplinary study of the Basin and Range Province, western USA. Tectonophysics 213, 57–96 (1992).

    ADS 

    Google Scholar
     

  • 25.

    Sun, W. Initiation and evolution of the South China Sea: an overview. Acta Geochim. 35, 215–225 (2016).


    Google Scholar
     

  • 26.

    Wang, D. & Shu, L. Late Mesozoic basin and range tectonics and related magmatism in Southeast China. Geosci. Front. 3, 109–124 (2012).


    Google Scholar
     

  • 27.

    Zhu, K.-Y., Li, Z.-X., Xu, X.-S. & Wilde, S. A. Late Triassic melting of a thickened crust in southeastern China: evidence for flat-slab subduction of the Paleo-Pacific plate. J. Asian Earth Sci. 74, 265–279 (2013).

    ADS 

    Google Scholar
     

  • 28.

    Li, S. et al. Mesozoic tectono-magmatic response in the East Asian ocean-continent connection zone to subduction of the Paleo-Pacific Plate. Earth-Sci. Rev. 192, 91–137 (2019).

    ADS 

    Google Scholar
     

  • 29.

    Pang, X. et al. Petroleum geology controlled by extensive detachment thinning of continental margin crust: a case study of Baiyun sag in the deep-water area of northern South China Sea. Pet. Explor. Dev. 45, 29–42 (2018).


    Google Scholar
     

  • 30.

    Sibuet, J.-C., Yeh, Y.-C. & Lee, C.-S. Geodynamics of the South China Sea. Tectonophysics 692, 98–119 (2016).

    ADS 

    Google Scholar
     

  • 31.

    Xie, X., Ren, J., Pang, X., Lei, C. & Chen, H. Stratigraphic architectures and associated unconformities of Pearl River Mouth basin during rifting and lithospheric breakup of the South China Sea. Mar. Geophys. Res. 40, 129–144 (2019).


    Google Scholar
     

  • 32.

    Franke, D. et al. The final rifting evolution in the South China Sea. Mar. Pet. Geol. 58, 704–720 (2014).


    Google Scholar
     

  • 33.

    Savva, D. et al. Seismic evidence of hyper-stretched crust and mantle exhumation offshore Vietnam. Tectonophysics 608, 72–83 (2013).

    ADS 

    Google Scholar
     

  • 34.

    Cameselle, A. L., Ranero, C. R., Franke, D. & Barckhausen, U. The continent-ocean transition on the northwestern South China Sea. Basin Res. 29, 73–95 (2017).

    ADS 

    Google Scholar
     

  • 35.

    Li, F. et al. Low‐viscosity crustal layer controls the crustal architecture and thermal distribution at hyperextended margins: modeling insight and application to the northern South China Sea Margin. Geochem. Geophys. Geosyst. 20, 3248–3267 (2019).

    ADS 

    Google Scholar
     

  • 36.

    Pin, Y., Di, Z. & Zhaoshu, L. A crustal structure profile across the northern continental margin of the South China sea. Tectonophysics 338, 1–21 (2001).

    ADS 

    Google Scholar
     

  • 37.

    Yeh, Y.-C. et al. Crustal features of the northeastern South China Sea: insights from seismic and magnetic interpretations. Mar. Geophys. Res. 33, 307–326 (2012).


    Google Scholar
     

  • 38.

    Crittenden, M. D. Metamorphic core complexes of the North American Cordillera: summary. Mem. Geol. Soc. Am. 153, 485–490 (1980).


    Google Scholar
     

  • 39.

    Malavieille, J. Extensional shearing deformation and kilometer-scale “a”-type folds in a Cordilleran Metamorphic Core Complex (Raft River Mountains, northwestern Utah). Tectonics 6, 423–448 (1987).

    ADS 

    Google Scholar
     

  • 40.

    MacCready, T., Snoke, A. W., Wright, J. E. & Howard, K. A. Mid-crustal flow during Tertiary extension in the Ruby Mountains core complex, Nevada. Bull. Geol. Soc. Am. 109, 1576–1594 (1997).

    CAS 

    Google Scholar
     

  • 41.

    Jolivet, L. et al. Strain localization during crustal-scale boudinage to form extensional metamorphic domes in the Aegean Sea. In Gneiss Domes in Orogeny (eds. Whitney, D. et al.) Vol. 380, 185–210 (Geological Society of America, 2004).

  • 42.

    Brun, J. & Sokoutis, D. Core complex segmentation in North Aegean, a dynamic view. Tectonics 37, 1797–1830 (2018).

    ADS 

    Google Scholar
     

  • 43.

    Rabillard, A. et al. Synextensional granitoids and detachment systems within cycladic metamorphic core complexes (Aegean Sea, Greece): toward a regional tectonomagmatic model. Tectonics 37, 2328–2362 (2018).


    Google Scholar
     

  • 44.

    Frost, E. G. & Heidrick, T. L. In Tertiary Extension and Mineral Deposits, Southwestern U.S. (eds. Rehrig, W. A. & Hardy, J. J.) Vol. 25 (Society of Economic Geologists, 1996).

  • 45.

    Spencer, J. E. Geologic continuous casting below continental and deep-sea detachment faults and at the striated extrusion of Sacsayhuaman, Peru. Geology 27, 327–330 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • 46.

    Singleton, J. S. Development of extension-parallel corrugations in the Buckskin-Rawhide metamorphic core complex, west-central Arizona. Bull. Geol. Soc. Am. 125, 453–472 (2013).


    Google Scholar
     

  • 47.

    Spencer, J. Structural analysis of three extensional detachment faults with data from the 2000 Space-Shuttle Radar Topography Mission. GSA Today 20, 4–10 (2010).


    Google Scholar
     

  • 48.

    Whitney, D. L., Teyssier, C. & Vanderhaeghe, O. Gneiss domes and crustal flow. In Gneiss Domes in Orogeny (eds. Whitney, D. L., Teyssier, C. & Siddoway, C. S.) Vol. 380, 15–33 (Geological Society of America, 2004).

  • 49.

    Lymer, G. et al. 3D development of detachment faulting during continental breakup. Earth Planet. Sci. Lett. 515, 90–99 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 50.

    Schuba, C. N. et al. A low-angle detachment fault revealed: three-dimensional images of the S-reflector fault zone along the Galicia passive margin. Earth Planet. Sci. Lett. 492, 232–238 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 51.

    Parnell-Turner, R., Escartín, J., Olive, J. A., Smith, D. K. & Petersen, S. Genesis of corrugated fault surfaces by strain localization recorded at oceanic detachments. Earth Planet. Sci. Lett. 498, 116–128 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 52.

    Little, T. A. et al. Evolution of a rapidly slipping, active low-angle normal fault, Suckling-Dayman metamorphic core complex, SE Papua New Guinea. GSA Bull. 131, 1333–1363 (2019).


    Google Scholar
     

  • 53.

    Gillard, M., Manatschal, G. & Autin, J. How can asymmetric detachment faults generate symmetric Ocean Continent Transitions? Terra Nov. 28, 27–34 (2016).

    ADS 

    Google Scholar
     

  • 54.

    Peron-Pinvidic, G. & Osmundsen, P. T. Architecture of the distal and outer domains of the mid-Norwegian rifted margin: insights from the Rån-Gjallar ridges system. Mar. Pet. Geol. 77, 280–299 (2016).


    Google Scholar
     

  • 55.

    Lister, G. S. & Davis, G. A. The origin of metamorphic core complexes and detachment faults formed during tertiary continental extension in the northern Colorado River region, USA. J. Struct. Geol. 11, 65–94 (1989).

    ADS 

    Google Scholar
     

  • 56.

    Gautier, P., Brun, J.-P. & Jolivet, L. Structure and kinematics of Upper Cenozoic extensional detachment on Naxos and Paros (Cyclades Islands, Greece). Tectonics 12, 1180–1194 (1993).

    ADS 

    Google Scholar
     

  • 57.

    Vanderhaeghe, O., Burg, J.-P. & Teyssier, C. Exhumation of migmatites in two collapsed orogens: Canadian Cordillera and French Variscides. Geol. Soc. Lond. Spec. Publ. 154, 181–204 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • 58.

    McFadden, R. R., Teyssier, C., Siddoway, C. S., Whitney, D. L. & Fanning, C. M. Oblique dilation, melt transfer, and gneiss dome emplacement. Geology 38, 375–378 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 59.

    Reynolds, S. J. & Lister, G. S. Folding of mylonitic zones in Cordilleran metamorphic core complexes: Evidence from near the mylonitic front. Geology 18, 216 (1990).

    ADS 

    Google Scholar
     

  • 60.

    Magee, C., Maharaj, S. M., Wrona, T. & Jackson, C. A. L. Controls on the expression of igneous intrusions in seismic reflection data. Geosphere 11, 1024–1041 (2015).

    ADS 

    Google Scholar
     

  • 61.

    Rabillard, A. et al. Interactions between plutonism and detachments during metamorphic core complex formation, Serifos Island (Cyclades, Greece). Tectonics 34, 1080–1106 (2015).

    ADS 

    Google Scholar
     

  • 62.

    Jolivet, L., Gorini, C., Smit, J. & Leroy, S. Continental breakup and the dynamics of rifting in back-arc basins: The Gulf of Lion margin. Tectonics 34, 662–679 (2015).

    ADS 

    Google Scholar
     

  • 63.

    Jolivet, L. et al. The north cycladic detachment system. Earth Planet. Sci. Lett. 289, 87–104 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 64.

    Jackson, M. P. A. & Hudec, M. R. Minibasins. In Salt Tectonics (eds. Jackson, M. P. A. & Hudec, M. R.) 155–180 (Cambridge University Press, 2017).

  • 65.

    Larsen, H. C. et al. Rapid transition from continental breakup to igneous oceanic crust in the South China Sea. Nat. Geosci. 11, 782–789 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 66.

    Gao, J. et al. The continent-ocean transition at the mid-northern margin of the South China Sea. Tectonophysics 654, 1–19 (2015).

    ADS 

    Google Scholar
     

  • 67.

    Lei, C. et al. Depositional architecture and structural evolution of a region immediately inboard of the locus of continental breakup (Liwan sub-basin, South China Sea). GSA Bull. 131, 1059–1074 (2019).

    CAS 

    Google Scholar
     

  • 68.

    Zhang, C. et al. Tectono‐sedimentary analysis of the hyperextended Liwan Sag Basin (midnorthern margin of the South China Sea). Tectonics 38, 470–491 (2019).

    ADS 

    Google Scholar
     

  • 69.

    Brune, S., Heine, C., Clift, P. D. & Pérez-Gussinyé, M. Rifted margin architecture and crustal rheology: reviewing Iberia-Newfoundland, Central South Atlantic and South China Sea.Mar. Pet. Geol. 79, 257–281 (2017).


    Google Scholar
     

  • 70.

    Wessel, P. et al. The generic mapping tools version 6. Geochem. Geophys. Geosystems 20, 5556–5564 (2019).

    ADS 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *