Spatial validation reveals poor predictive performance of large-scale ecological mapping models


  • 1.

    Mitchard, E. T. A. The tropical forest carbon cycle and climate change. Nature 559, 527–534 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl Acad. Sci. USA 108, 9899–9904 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Change 2, 182–185 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 4.

    Liu, Y. Y. et al. Recent reversal in loss of global terrestrial biomass. Nat. Clim. Change 5, 470–474 (2015).

    ADS 

    Google Scholar
     

  • 5.

    Harris, N. L. et al. Baseline map of carbon emissions from deforestation in tropical regions. Science 336, 1573–1576 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Marco, M. D., Watson, J. E. M., Currie, D. J., Possingham, H. P. & Venter, O. The extent and predictability of the biodiversity–carbon correlation. Ecol. Lett. 21, 365–375 (2018).

    PubMed 

    Google Scholar
     

  • 7.

    Giardina, F. et al. Tall Amazonian forests are less sensitive to precipitation variability. Nat. Geosci. 11, 405–409 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 8.

    Erb, K.-H. et al. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553, 73–76 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Zarin, D. J. et al. Can carbon emissions from tropical deforestation drop by 50% in 5 years? Glob. Change Biol. 22, 1336–1347 (2016).

    ADS 

    Google Scholar
     

  • 10.

    Chaplin-Kramer, R. et al. Degradation in carbon stocks near tropical forest edges. Nat. Commun. 6, 10158 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Brandt, M. et al. Satellite passive microwaves reveal recent climate-induced carbon losses in African drylands. Nat. Ecol. Evol. 2, 827 (2018).

    PubMed 

    Google Scholar
     

  • 12.

    Fan, L. et al. Satellite-observed pantropical carbon dynamics. Nat. Plants 5, 944–951 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Mitchard, E. T. et al. Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites. Glob. Ecol. Biogeogr. 23, 935–946 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Mitchard, E. T. et al. Uncertainty in the spatial distribution of tropical forest biomass: a comparison of pan-tropical maps. Carbon Balance Manag. 8, 10 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Avitabile, V. et al. An integrated pan-tropical biomass map using multiple reference datasets. Glob. Change Biol. 22, 1406–1420 (2016).

    ADS 

    Google Scholar
     

  • 16.

    Réjou-Méchain, M. et al. Upscaling forest biomass from field to satellite measurements: Sources of errors and ways to reduce them. Surv. Geophys. 40, 881–911 (2019).

    ADS 

    Google Scholar
     

  • 17.

    Saatchi, S. Mapping tropical forest biomass: synthesis of ground and remote sensing inventory. Consult. Rep. 2 High Carbon Stock Sci. Study (2015).

  • 18.

    Ploton, P. et al. A map of African humid tropical forest aboveground biomass derived from management inventories. Sci. Data 7, 221 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Philippon, N. et al. The light-deficient climates of Western Central African evergreen forests. Environ. Res. Lett. 14, 034007 (2018).

  • 20.

    Saatchi, S. et al. Seeing the forest beyond the trees. Glob. Ecol. Biogeogr. 24, 606–610 (2015).


    Google Scholar
     

  • 21.

    Mermoz, S., Le Toan, T., Villard, L., Réjou-Méchain, M. & Seifert-Granzin, J. Biomass assessment in the Cameroon savanna using ALOS PALSAR data. Remote Sens. Environ. 155, 109–119 (2014).

    ADS 

    Google Scholar
     

  • 22.

    Lewis, S. L. et al. Above-ground biomass and structure of 260 African tropical forests. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120295 (2013).


    Google Scholar
     

  • 23.

    Hansen, M. C., Potapov, P. & Tyukavina, A. Comment on “Tropical forests are a net carbon source based on aboveground measurements of gain and loss”. Science 363, eaar3629 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Baccini, A. et al. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358, 230–234 (2017).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • 25.

    Breiman, L. Random forests. Mach. Learn 45, 5–32 (2001).

    MATH 

    Google Scholar
     

  • 26.

    Lyapustin, A., Wang, Y., Korkin, S. & Huang, D. MODIS Collection 6 MAIAC algorithm. Atmos. Meas. Tech. 11, 5741–5765 (2018).

  • 27.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).


    Google Scholar
     

  • 28.

    Kühn, I. Incorporating spatial autocorrelation may invert observed patterns. Divers. Distrib. 13, 66–69 (2007).


    Google Scholar
     

  • 29.

    Dormann, C. F. Effects of incorporating spatial autocorrelation into the analysis of species distribution data. Glob. Ecol. Biogeogr. 16, 129–138 (2007).


    Google Scholar
     

  • 30.

    Roberts, D. R. et al. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40, 913–929 (2017).


    Google Scholar
     

  • 31.

    Valavi, R., Elith, J., Lahoz‐Monfort, J. J. & Guillera‐Arroita, G. blockCV: an r package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models. Methods Ecol. Evol. 10, 225–232 (2019).


    Google Scholar
     

  • 32.

    Parmentier, I. et al. Predicting alpha diversity of African rain forests: models based on climate and satellite-derived data do not perform better than a purely spatial model. J. Biogeogr. 38, 1164–1176 (2011).


    Google Scholar
     

  • 33.

    Baccini, A., Walker, W., Carvalho, L., Farina, M. & Houghton, R. A. Response to Comment on “Tropical forests are a net carbon source based on aboveground measurements of gain and loss”. Science 363, eaat1205 (2019).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • 34.

    Xu, L., Saatchi, S. S., Yang, Y., Yu, Y. & White, L. Performance of non-parametric algorithms for spatial mapping of tropical forest structure. Carbon Balance Manag. 11, 18 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Dormann, C. F. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30, 609–628 (2007).


    Google Scholar
     

  • 36.

    Irwin, A. The ecologist who wants to map everything. Nature 573, 478–481 (2019).

    ADS 
    PubMed 

    Google Scholar
     

  • 37.

    Legendre, P. Spatial autocorrelation: trouble or new paradigm? Ecology 74, 1659–1673 (1993).


    Google Scholar
     

  • 38.

    Meyer, H., Reudenbach, C., Wöllauer, S. & Nauss, T. Importance of spatial predictor variable selection in machine learning applications–Moving from data reproduction to spatial prediction. Ecol. Model. 411, 108815 (2019).


    Google Scholar
     

  • 39.

    Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T. & Zeileis, A. Conditional variable importance for random forests. BMC Bioinformatics 9, 307 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Lefsky, M. A. et al. Estimates of forest canopy height and aboveground biomass using ICESat. Geophys. Res. Lett. 32, L22S02 (2005).

  • 41.

    Réjou-Méchain, M. et al. Upscaling Forest biomass from field to satellite measurements: sources of errors and ways to reduce them. Surv. Geophys. 40, 881–911 (2019).

  • 42.

    Mitchard, E. T. A. et al. Comment on ‘A first map of tropical Africa’s above-ground biomass derived from satellite imagery’. Environ. Res. Lett. 6, 049001 (2011).

    ADS 

    Google Scholar
     

  • 43.

    Asner, G. P. et al. High-resolution carbon mapping on the million-hectare Island of Hawaii. Front. Ecol. Environ. 9, 434–439 (2011).


    Google Scholar
     

  • 44.

    Asner, G. P. et al. Human and environmental controls over aboveground carbon storage in Madagascar. Carbon Balance Manag. 7, 2 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Asner, G. P. et al. High-resolution mapping of forest carbon stocks in the Colombian Amazon. Biogeosciences 9, 2683 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 46.

    Asner, G. P. et al. Mapped aboveground carbon stocks to advance forest conservation and recovery in Malaysian Borneo. Biol. Conserv. 217, 289–310 (2018).


    Google Scholar
     

  • 47.

    Xu, L. et al. Spatial distribution of carbon stored in forests of the Democratic Republic of Congo. Sci. Rep. 7, 15030 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Schepaschenko, D. et al. The Forest Observation System, building a global reference dataset for remote sensing of forest biomass. Sci. Data 6, 1–11 (2019).


    Google Scholar
     

  • 49.

    Chave, J. et al. Ground data are essential for biomass remote sensing missions. Surv. Geophys. 40, 863–880 (2019).

    ADS 

    Google Scholar
     

  • 50.

    van den Hoogen, J. et al. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404–408 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 52.

    Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    Trabucco, A. & Zomer, R. J. Global aridity index (global-aridity) and global potential evapo-transpiration (global-PET) geospatial database. CGIAR Consort Spat Information (2009).

  • 54.

    Wilson, A. M. & Jetz, W. Remotely sensed high-resolution global cloud dynamics for predicting ecosystem and biodiversity distributions. PLoS Biol. 14, e1002415 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Bowman, D. M., Williamson, G. J., Keenan, R. J. & Prior, L. D. A warmer world will reduce tree growth in evergreen broadleaf forests: evidence from A ustralian temperate and subtropical eucalypt forests. Glob. Ecol. Biogeogr. 23, 925–934 (2014).


    Google Scholar
     

  • 56.

    Malhi, Y. et al. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl Acad. Sci. USA 106, 20610–20615 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 57.

    Rennó, C. D. et al. HAND, a new terrain descriptor using SRTM-DEM: Mapping terra-firme rainforest environments in Amazonia. Remote Sens. Environ. 112, 3469–3481 (2008).

    ADS 

    Google Scholar
     

  • 58.

    Nachtergaele, F., Velthuizen, H. V., Verelst, L. & Wiberg, D. Harmonized World Soil Database (HWSD) (Food and Agriculture Organization, U. N. Rome, 2009).

  • 59.

    Defourny, P. et al. Algorithm Theoretical Basis Document for Land Cover Climate Change Initiative. Technical report (European Space Agency, 2014).

  • 60.

    Segal, M. & Xiao, Y. Multivariate random forests. WIREs Data Min. Knowl. Discov. 1, 80–87 (2011).


    Google Scholar
     

  • 61.

    CCI, ESA. New Release of 300 m Global Land Cover and 150 m Water Products (v.1.6.1) and new version of the User Tool (3.10) for Download (ESA CCI Land cover website, 2016).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *