Spatial variance-mass allometry of population density in felids from camera-trapping studies worldwide


  • 1.

    Marquet, P. A. Scaling and power-laws in ecological systems. J. Exp. Biol. 208, 1749–1769 (2005).

    PubMed 

    Google Scholar
     

  • 2.

    GarciaMartin, H. & Goldenfeld, N. On the origin and robustness of power-law species-area relationships in ecology. Proc. Natl. Acad. Sci. 103, 10310–10315 (2006).

    ADS 

    Google Scholar
     

  • 3.

    Taylor, L. R. Aggregation, variance and the mean. Nature 189, 732–735 (1961).

    ADS 

    Google Scholar
     

  • 4.

    Damuth, J. Population density and body size in mammals. Nature 290, 699–700 (1981).

    ADS 

    Google Scholar
     

  • 5.

    Carbone, C. & Gittleman, J. L. A common rule for the scaling of carnivore density. Science 295, 2273–2276 (2002).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    White, C. R. & Seymour, R. S. Allometric scaling of mammalian metabolism. J. Exp. Biol. 208, 1611–1619 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    da Silva, J. K. L., Garcia, G. J. M. & Barbosa, L. A. Allometric scaling laws of metabolism. Phys. Life Rev. 3, 229–261 (2006).

    ADS 

    Google Scholar
     

  • 8.

    Reich, P. B., Tjoelker, M. G., Machado, J.-L. & Oleksyn, J. Universal scaling of respiratory metabolism, size and nitrogen in plants. Nature 439, 457–461 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Eisler, Z., Bartos, I. & Kertész, J. Fluctuation scaling in complex systems: Taylor’s law and beyond. Adv. Phys. 57, 89–142 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • 10.

    Reed, D. H. & Hobbs, G. R. The relationship between population size and temporal variability in population size. Anim. Conserv. 7, 1–8 (2004).


    Google Scholar
     

  • 11.

    Benton, T. G. & Beckerman, A. P. Population dynamics in a noisy world: lessons from a mite experimental system. in Advances in Ecological Research vol. 37, pp. 143–181 (Academic Press, Cambridge, 2005).

  • 12.

    Ramsayer, J., Fellous, S., Cohen, J. E. & Hochberg, M. E. Taylor’s law holds in experimental bacterial populations but competition does not influence the slope. Biol. Lett. 8, 316–319 (2012).

    PubMed 

    Google Scholar
     

  • 13.

    Kaltz, O., Escobar-Páramo, P., Hochberg, M. E. & Cohen, J. E. Bacterial microcosms obey Taylor’s law: effects of abiotic and biotic stress and genetics on mean and variance of population density. Ecol. Process. 1, 5 (2012).


    Google Scholar
     

  • 14.

    Anderson, R. M., Gordon, D. M., Crawley, M. J. & Hassell, M. P. Variability in the abundance of animal and plant species. Nature 296, 245–248 (1982).

    ADS 

    Google Scholar
     

  • 15.

    Ballantyne, F. I. The upper limit for the exponent of Taylor’s power law is a consequence of deterministic population growth. Evol. Ecol. Res. 8 (2005).

  • 16.

    Engen, S., Lande, R. & Sæther, B.-E. A general model for analyzing taylor’s spatial scaling laws. Ecology 89, 2612–2622 (2008).

    PubMed 

    Google Scholar
     

  • 17.

    Damuth, J. Interspecific allometry of population density in mammals and other animals: the independence of body mass and population energy-use. Biol. J. Linn. Soc. 31, 193–246 (1987).


    Google Scholar
     

  • 18.

    Blackburn, T. M. & Gaston, K. J. The relationship between animal abundance and body size: a review of the mechanisms. In Advances in Ecological Research (eds Fitter, A. H. & Raffaelli, D.) 181–210 (Academic Press, Cambridge, 1999).


    Google Scholar
     

  • 19.

    Jennings, S., Oliveira, J. A. A. D. & Warr, K. J. Measurement of body size and abundance in tests of macroecological and food web theory. J. Anim. Ecol. 76, 72–82 (2007).

    PubMed 

    Google Scholar
     

  • 20.

    Belgrano, A. & Reiss, J. The Role of Body Size in Multispecies Systems (Academic Press, Cambridge, 2011).


    Google Scholar
     

  • 21.

    Lawton, J. H. What is the relationship between population density and body size in animals?. Oikos 55, 429–434 (1989).


    Google Scholar
     

  • 22.

    Marquet, P. A., Navarrete, S. A. & Castilla, J. C. Scaling oopulation density to body size in rocky intertidal communities. Science 250, 1125–1127 (1990).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Silva, M. & Downing, J. A. The allometric scaling of density and body mass: a nonlinear relationship for terrestrial mammals. Am. Nat. 145(5), 704–727 (1995).


    Google Scholar
     

  • 24.

    Dunham, J. B. & Vinyard, G. L. Relationships between body mass, population density, and the self-thinning rule in stream-living salmonids. Can. J. Fish. Aquat. Sci. 54, 6 (1997).


    Google Scholar
     

  • 25.

    Enquist, B. J., Brown, J. H. & West, G. B. Allometric scaling of plant energetics and population density. Nature 395, 4 (1998).


    Google Scholar
     

  • 26.

    Hendriks, A. J. Allometric scaling of rate, age and density parameters in ecological models. Oikos 86, 293–310 (1999).


    Google Scholar
     

  • 27.

    Schmid, P. E. Relation between population density and body size in stream communities. Science 289, 1557–1560 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Morand, S. & Poulin, R. Body size–density relationships and species diversity in parasitic nematodes: patterns and likely processes. Evol. Ecol. Res. 12 (2002).

  • 29.

    Niklas, K. J., Midgley, J. J. & Enquist, B. J. A general model for mass–growth–density relations across tree-dominated communities. Evol. Ecol. Res. 5, 459–468 (2003).


    Google Scholar
     

  • 30.

    Makarieva, A. M., Victor, G. & Li, B.-L. Why do population density and inverse home range scale differently with body size?. Ecol. Complex. 2, 259–271 (2005).


    Google Scholar
     

  • 31.

    Reuman, D. C., Mulder, C., Raffaelli, D. & Cohen, J. E. Three allometric relations of population density to body mass: theoretical integration and empirical tests in 149 food webs. Ecol. Lett. 11, 1216–1228 (2008).

    PubMed 

    Google Scholar
     

  • 32.

    Reuman, D. C. et al. Allometry of body size and abundance in 166 food webs. in Advances in Ecological Research vol. 41, pp. 1–44 (Elsevier, 2009).

  • 33.

    Carbone, C., Pettorelli, N. & Stephens, P. A. The bigger they come, the harder they fall: body size and prey abundance influence predator–prey ratios. Biol. Lett. 7, 312–315 (2011).

    PubMed 

    Google Scholar
     

  • 34.

    Cohen, J. E., Xu, M. & Schuster, W. S. F. Allometric scaling of population variance with mean body size is predicted from Taylor’s law and density-mass allometry. Proc. Natl. Acad. Sci. 109, 15829–15834 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Segura, A. M. & Perera, G. The metabolic basis of fat tail distributions in populations and community fluctuations. Front. Ecol. Evol. 7, 148 (2019).


    Google Scholar
     

  • 36.

    Agusti, S., Duarte, C. M. & Kalff, J. Algal cell size and the maximum density and biomass of phytoplankton1. Limnol. Oceanogr. 32, 983–986 (1987).

    ADS 

    Google Scholar
     

  • 37.

    Belgrano, A., Allen, A. P., Enquist, B. J. & Gillooly, J. F. Allometric scaling of maximum population density: a common rule for marine phytoplankton and terrestrial plants. Ecol. Lett. 5, 611–613 (2002).


    Google Scholar
     

  • 38.

    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).


    Google Scholar
     

  • 39.

    Barneche, D. R., Kulbicki, M., Floeter, S. R., Friedlander, A. M. & Allen, A. P. Energetic and ecological constraints on population density of reef fishes. Proc. R. Soc. B 283, 20152186 (2016).

    PubMed 

    Google Scholar
     

  • 40.

    Ghedini, G., White, C. R. & Marshall, D. J. Metabolic scaling across succession: do individual rates predict community-level energy use?. Funct. Ecol. 32, 1447–1456 (2018).


    Google Scholar
     

  • 41.

    Lagrue, C., Poulin, R. & Cohen, J. E. Parasitism alters three power laws of scaling in a metazoan community: Taylor’s law, density-mass allometry, and variance-mass allometry. Proc. Natl. Acad. Sci. 112, 1791–1796 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Xu, M. Ecological scaling laws link individual body size variation to population abundance fluctuation. Oikos 125, 288–299 (2016).


    Google Scholar
     

  • 43.

    Taylor, L. R. & Woiwod, I. P. Comparative synoptic dynamics. I. Relationships between inter- and intra-specific spatial and temporal variance/mean population parameters. J. Anim. Ecol. 51, 879 (1982).


    Google Scholar
     

  • 44.

    Cyr, H., Downing, J. A., Peters, R. H. & Cyr, H. Density-body size relationships in local aquatic communities. Oikos 79, 333 (1997).


    Google Scholar
     

  • 45.

    O’Connell, A. F., Nichols, J. D. & Karant, U. K. Camera traps in animal ecology methods and analyses (Springer, London, 2010).


    Google Scholar
     

  • 46.

    Anile, S. & Devillard, S. Study design and body mass influence RAIs from camera trap studies: evidence from the Felidae. Anim. Conserv. 19, 35–45 (2015).


    Google Scholar
     

  • 47.

    Anile, S. & Devillard, S. Camera-trapping provides insights into adult sex ratio variability in felids. Mamm. Rev. 48, 168–179 (2018).


    Google Scholar
     

  • 48.

    Wilson, E. E. & Wolkovich, E. M. Scavenging: how carnivores and carrion structure communities. Trends Ecol. Evol. 26, 129–135 (2011).

    PubMed 

    Google Scholar
     

  • 49.

    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484 (2014).


    Google Scholar
     

  • 50.

    Van Valkenburgh, B., Hayward, M. W., Ripple, W. J., Meloro, C. & Roth, V. L. The impact of large terrestrial carnivores on Pleistocene ecosystems. Proc. Natl. Acad. Sci. 113, 862–867 (2016).

    ADS 
    PubMed 

    Google Scholar
     

  • 51.

    Albert, C., Luque, G. M. & Courchamp, F. The twenty most charismatic species. PLoS ONE 13, e0199149 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Dickman, S. Felid conservation priorities. Conserv. Biol. (2015).

  • 53.

    Inskip, C. & Zimmermann, A. Human-felid conflict: a review of patterns and priorities worldwide. Oryx 43, 18 (2009).


    Google Scholar
     

  • 54.

    Macdonald, D. W. & Loveridge, A. J. The Biology and Conservation of Wild Felids (Oxford University Press, Oxford, 2010).


    Google Scholar
     

  • 55.

    Hunter, L. Wild Cats of the World (Bloomsbury Publishing, London, 2015).


    Google Scholar
     

  • 56.

    Rizzuto, M., Carbone, C. & Pawar, S. Foraging constraints reverse the scaling of activity time in carnivores. Nat. Ecol. Evol. 2, 247–253 (2018).

    PubMed 

    Google Scholar
     

  • 57.

    Karanth, K. U., Nichols, J. D., Samba Kumar, N., Link, W. A. & Hines, J. E. Tigers and their prey: predicting carnivore densities from prey abundance. Proc. Natl. Acad. Sci. 101, 4854–4858 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    Jiang, G. et al. New hope for the survival of the Amur leopard in China. Sci. Rep. 15, 15475 (2015).

    ADS 

    Google Scholar
     

  • 59.

    Jedrzejewski, W. et al. Estimating large carnivore populations at global scale based on spatial predictions of density and distribution: application to the jaguar (Panthera onca). PLoS ONE 13, e0194719 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Kitchener, A. C. et al. A revised taxonomy of the Felidae. The final report of the Cat Classification Task Force of the IUCN/SSC Cat Specialist Group. Cat News Special Issue, pp. 11–80 (2017).

  • 61.

    Sinclair, A. R. E. Mammal populations: fluctuation, regulation, life history theory and their implications for conservation. Front. Popul. Ecol. 1, 127–154 (1996).


    Google Scholar
     

  • 62.

    Santini, L., Isaac, N. J. B. & Ficetola, G. F. TetraDENSITY: a database of population density estimates in terrestrial vertebrates. Glob. Ecol. Biogeogr. 27, 787–791 (2018).


    Google Scholar
     

  • 63.

    Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl. Acad. Sci. 114, E6089–E6096 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 64.

    Ripple, W. J. et al. Extinction risk is most acute for the world’s largest and smallest vertebrates. Proc. Natl. Acad. Sci. 114, 10678–10683 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 65.

    Wikramanayake, E. et al. A landscape-based conservation strategy to double the wild tiger population: landscape-based strategy for tiger recovery. Conserv. Lett. 4, 219–227 (2011).


    Google Scholar
     

  • 66.

    Stearns, S. C. The Influence of size and phylogeny on patterns of covariation among life-history traits in the mammals. Oikos 41, 173 (1983).


    Google Scholar
     

  • 67.

    Paemelaere, E. & Dobson, F. S. Fast and slow life histories of carnivores. Can. J. Zool. 89, 692–704 (2011).


    Google Scholar
     

  • 68.

    Peters, R. H. & Wassenberg, K. The effect of body size on animal abundance. Oecologia 60, 89–96 (1983).

    ADS 
    PubMed 

    Google Scholar
     

  • 69.

    Savage, V. M., Gillooly, J. F., Brown, J. H., West, G. B. & Charnov, E. L. Effects of Body size and temperature on population growth. Am. Nat. 163, 429–441 (2004).

    PubMed 

    Google Scholar
     

  • 70.

    Gamelon, M. et al. Influence of life-history tactics on transient dynamics: a comparative analysis across mammalian populations. Am. Nat. 184, 673–683 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 71.

    McCallum, J. Changing use of camera traps in mammalian field research: habitats, taxa and study types: camera trap use and development in field ecology. Mamm. Rev. 43, 196–206 (2013).


    Google Scholar
     

  • 72.

    Johnson, P. J. et al. Rensching cats and dogs: feeding ecology and fecundity trends explain variation in the allometry of sexual size dimorphism. R. Soc. Open Sci. 4, 170453 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 73.

    Efford, M. Density estimation in live-trapping studies. Oikos 106, 598–610 (2004).


    Google Scholar
     

  • 74.

    Luskin, M. S., Albert, W. R. & Tobler, M. W. Sumatran tiger survival threatened by deforestation despite increasing densities in parks. Nat. Commun. 8, 1783 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 75.

    Royle, J. A., Chandler, R. B., Sollmann, R. & Gardner, B. Spatial Capture-Recapture (Springer, New York, 2013).


    Google Scholar
     

  • 76.

    Jones, K. E. et al. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals: ecological Archives E090–184. Ecology 90, 2648 (2009).


    Google Scholar
     

  • 77.

    Huaranca, J. C. et al. Density and activity patterns of Andean cat and pampas cat (Leopardus jacobita and L. colocolo) in the Bolivian Altiplano. Wildl. Res. 47(1), 68–76 (2020).


    Google Scholar
     

  • 78.

    Tobler, M. W. & Powell, G. V. N. Estimating jaguar densities with camera traps: problems with current designs and recommendations for future studies. Biol. Conserv. 159, 109–118 (2013).


    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *