Species distribution models advance our knowledge of the Neanderthals’ paleoecology on the Iranian Plateau


  • 1.

    Gómez-Robles, A. Dental evolutionary rates and its implications for the Neanderthal–modern human divergence. Sci. Adv. 5, eaaw1268 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Higham, T. et al. The timing and spatiotemporal patterning of Neanderthal disappearance. Nature 512, 306–309 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Wenzel, S. Neanderthal presence and behaviour in central and Northwestern Europe during MIS. In Developments in Quaternary Sciences Vol. 7 (eds Sirocko, F. et al.) 173–193 (Elsevier, Amsterdam, 2007).


    Google Scholar
     

  • 4.

    Sørensen, B. Demography and the extinction of European Neanderthals. J. Anthropol. Archaeol. 30, 17–29 (2011).


    Google Scholar
     

  • 5.

    Salazar-García, D. C. et al. Neanderthal diets in central and southeastern Mediterranean Iberia. Quat. Int. 318, 3–18 (2013).


    Google Scholar
     

  • 6.

    Wißing, C. et al. Isotopic evidence for dietary ecology of late Neandertals in North-Western Europe. Quat. Int. 411, 327–345 (2016).


    Google Scholar
     

  • 7.

    Nielsen, T. K. et al. Investigating Neanderthal dispersal above 55°N in Europe during the Last Interglacial Complex. Quat. Int. 431, 88–103 (2017).


    Google Scholar
     

  • 8.

    Nicholson, C. M. Eemian paleoclimate zones and Neanderthal landscape-use: a GIS model of settlement patterning during the last interglacial. Quat. Int. 438, 144–157 (2017).


    Google Scholar
     

  • 9.

    Rhodes, S. E., Starkovich, B. M. & Conard, N. J. Did climate determine Late Pleistocene settlement dynamics in the Ach Valley, SW Germany?. PLoS ONE 14, e0215172 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Defleur, A. R. & Desclaux, E. Impact of the last interglacial climate change on ecosystems and Neanderthals behavior at Baume Moula-Guercy, Ardèche, France. J. Archaeol. Sci. 104, 114–124 (2019).


    Google Scholar
     

  • 11.

    Hovers, E. Territorial Behavior in the Middle Paleolithic of the Southern Levant. In: Settlement dynamics of the Middle Paleolithic and Middle Stone Age, Conard, N. J., editor. Kerns Verlag T¨ubingen; 123–152 (2001).

  • 12.

    Shea, J. J. Neandertals, competition, and the origin of modern human behavior in the Levant. Evol. Anthropol. 12, 173–187 (2003).


    Google Scholar
     

  • 13.

    Been, E. et al. The first Neanderthal remains from an open-air Middle Palaeolithic site in the Levant. Sci. Rep. 7, 2958 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Vahdati Nasab, H., Clark, G. A. & Torkamandi, S. Late Pleistocene dispersal corridors across the Iranian Plateau: a case study from Mirak, a Middle Paleolithic site on the Northern Edge of the Iranian Central Desert (Dasht-e Kavir). Quat. Int. 300, 267–281 (2013).


    Google Scholar
     

  • 15.

    Heydari-Guran, S. Palaeolithic Landscapes of Iran. BAR International Series, 2568 (2014).

  • 16.

    Bazgir, B. et al. Understanding the emergence of modern humans and the disappearance of Neanderthals: Insights from Kaldar Cave (Khorramabad Valley, Western Iran). Sci. Rep. 7, 43460 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Smith, P. E. L. Paleolithic Archaeology in Iran (University of Pennsylvania Press, Philadelphia, 1986).


    Google Scholar
     

  • 18.

    Heydari-Guran, S. & Ghasidian, E. The MUP Zagros Project: tracking the Middle-Upper Palaeolithic transition in the Kermanshah region, West-Central Zagros, Iran. Antiquity 91, 1–7 (2017).


    Google Scholar
     

  • 19.

    Heydari-Guran, S. & Ghasidian, E. Late Pleistocene hominin settlement patterns and population dynamics in the Zagros Mountains: Kermanshah region. Archaeol. Res. Asia 21, 100161 (2020).


    Google Scholar
     

  • 20.

    Varela, S., Lobo, J. M. & Hortal, J. Using species distribution models in paleobiogeography: a matter of data, predictors and concepts. Palaeogeogr. Palaeoclimatol. Palaeoecol. 310, 451–463 (2011).


    Google Scholar
     

  • 21.

    Svenning, J. C., Fløjgaard, C., Marske, K. A., Nógues-Bravo, D. & Normand, S. Applications of species distribution modeling to paleobiology. Quat. Sci. Rev. 30, 2930–2947 (2011).

    ADS 

    Google Scholar
     

  • 22.

    Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat Suitability and Distribution Models: With Applications in R (Cambridge University Press, Cambridge, 2017).


    Google Scholar
     

  • 23.

    Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, eaat858 (2019).


    Google Scholar
     

  • 24.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).


    Google Scholar
     

  • 25.

    Warren, D. L., Glor, R. E. & Turelli, M. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33, 607–611 (2010).


    Google Scholar
     

  • 26.

    Banks, W. E. et al. Neanderthal extinction by competitive exclusion. PLoS ONE 3, e3972 (2008).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Franklin, J., Potts, A. J., Fisher, E. C., Cowling, R. M. & Marean, C. M. Paleodistribution modeling in archaeology and paleoanthropology. Quat. Sci. Rev. 110, 1–14 (2015).


    Google Scholar
     

  • 28.

    Benito, B. M. et al. The ecological niche and distribution of Neanderthals during the Last Interglacial. J. Biogeogr. 44, 51–61 (2017).


    Google Scholar
     

  • 29.

    Giampoudakis, K. et al. Niche dynamics of Palaeolithic modern humans during the settlement of the Palaearctic. Glob. Ecol. Biogeogr. 26, 359–370 (2017).


    Google Scholar
     

  • 30.

    Marean, C. W. A critique of the evidence for scavenging by Neandertals and early modern humans: new data from Kobeh Cave (Zagros Mountains, Iran) and Die Kelders Cave 1 layer 10 (South Africa). J. Hum. Evol. 35, 111–136 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Marean, C. W. & Kim, S. Y. Mousterian large-mammal remains from Kobeh Cave: behavioural implications for Neanderthals and early modern humans. Curr. Anthropol. 39, S79–S114 (1998).


    Google Scholar
     

  • 32.

    Mashkour, M. et al. Carnivores and their prey in the Wezmeh Cave (Kermanshah, Iran): a Late Pleistocene refuge in the Zagros. Int. J. Osteoarchaeol. 19, 678–694 (2009).


    Google Scholar
     

  • 33.

    Biglari, F. et al. Qaleh Bozi, new evidence of late middle paleolithic occupation in the Zayandeh-Rud Basin, Esfahan Province. Archaeol. Res. Iran 7, 7–26 (2015).


    Google Scholar
     

  • 34.

    Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?. Glob. Ecol. Biogeogr. 12, 361–371 (2003).


    Google Scholar
     

  • 35.

    Melchionna, M. et al. Fragmentation of Neanderthals’ pre-extinction distribution by climate change. Palaeogeogr. Palaeoclimatol. Palaeoecol. 496, 146–154 (2018).


    Google Scholar
     

  • 36.

    Hole, F. & Flannery, K. V. The prehistory of Southwestern Iran: a preliminary report. Proc. Prehist. Soc. 22, 147–206 (1967).


    Google Scholar
     

  • 37.

    Roustaei, K. et al. Recent paleolithic surveys in Lurestan. Curr. Anthropol. 45, 692–707 (2004).


    Google Scholar
     

  • 38.

    Diedrich, C. Ice age spotted hyenas as Neanderthal exhumers and scavengers in Europe. Chronicles Sci. 1, 1–34 (2014).


    Google Scholar
     

  • 39.

    Banks, W. E. The application of ecological niche modeling methods to archaeological data in order to examine culture-environment relationships and cultural trajectories. Quaternaire 28, 271–276 (2017).


    Google Scholar
     

  • 40.

    Banks, W. E. et al. Eco-cultural niches of the Badegoulian: unraveling links between cultural adaptation and ecology during the Last Glacial Maximum in France. J. Anthropol. Archaeol. 30, 359–374 (2011).


    Google Scholar
     

  • 41.

    King, T. et al. Azokh cave hominin remains. In Azokh cave and the transcaucasian corridor, vertebrate paleobiology and paleoanthropology (eds Fernndez-Jalvo, Y. et al.) 103–106 (Springer, Dordrecht, 2016).


    Google Scholar
     

  • 42.

    Solecki, R. S. Prehistory in Shanidar valley, Northern Iraq. Science 139, 179–193 (1963).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Pomeroy, E. et al. Newly-discovered Neanderthal remains from Shanidar Cave, Iraqi Kurdistan, and their attribution to Shanidar 5. J. Hum. Evol. 111, 102–118 (2017).

    PubMed 

    Google Scholar
     

  • 44.

    Zanolli, C. et al. A Neanderthal from the Central Western Zagros, Iran. Structural reassessment of the Wezmeh 1 maxillary premolar. J. Hum. Evol. 135, 102643 (2019).

    PubMed 

    Google Scholar
     

  • 45.

    Coon, C. S. The seven caves. In: Archaeological Exploration in the Middle East. (Alfred Knopf, 1975).

  • 46.

    Biglari, F. & Heydari, S. Do-Ashkaft: a recent discovery Mousterian cave site in Kermanshah Plain, Iran. Antiquity 75, 487–488 (2001).


    Google Scholar
     

  • 47.

    Conard, N. J., Ghasidian, E. & Heydari, S. The paleolithic of Iran. In Ancient Iran (ed. Potts, D. T.) 29–48 (Oxford Press, Oxford, 2013).


    Google Scholar
     

  • 48.

    Power, R. C. Neanderthals and their diet. In eLS (Wiley, 2019).

  • 49.

    Perkins, D. Prehistoric fauna from Shanidar, Iraq. Science 144, 1565–1566 (1964).

    ADS 
    PubMed 

    Google Scholar
     

  • 50.

    Turnbull, P. F. The mammalian fauna of Warwasi rock shelter, west-central Iran. Fieldiana Geol. 33, 141–155 (1975).


    Google Scholar
     

  • 51.

    Hesse, B. Paleolithic Faunal Remains from Ghar-I-Khar, Western Iran (University of Alabama Press, Alabama, 1989).


    Google Scholar
     

  • 52.

    Karami, M., Ghadirian, T. & Faizolahi, K. The Atlas of the Mammals of Iran (Jahad Daneshgahi Press, Tehran, 2016).


    Google Scholar
     

  • 53.

    Naderi, S. Evolutionary history of wild goat (Capra aegagrus) and the goat (C. hircus) based on the analysis of mitochondrial and nuclear DNA polymorphism: Implications for conservation and for the origin of the domestication. Ecology, Environment. Grenoble: Université Joseph-Fourier – Grenoble I (2007).

  • 54.

    Yusefi, G. H., Faizolahi, K., Darvish, J., Safi, K. & Brito, J. C. The species diversity, distribution, and conservation status of the terrestrial mammals of Iran. J. Mammal. 100, 55–71 (2019).


    Google Scholar
     

  • 55.

    Hijmans, R. J. Raster: Geographic Data Analysis and Modeling. R package, (2015).

  • 56.

    R Core Team. R: A Language and Environment for Statistical Computing (R Core Team, Vienna, Austria, 2017).

  • 57.

    Jarvis, A., Reuter, H. I., Nelson, A. & Guevara, E. Hole-filled SRTM for the globe Version 4. Available from the CGIAR-CSI SRTM 90m Database https://srtm.csi.cgiar.org on 15 April 2015 (2008).

  • 58.

    Quinn, G. P. & Keough, M. J. Experimental Designs and Data Analysis for Biologists (Cambridge University Press, Cambridge, 2002).


    Google Scholar
     

  • 59.

    Naimi, B. Uncertainty Analysis for Species Distribution Models. R package version 1.1–15 (2015).

  • 60.

    Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).

    PubMed 

    Google Scholar
     

  • 61.

    McCullagh, P. & Nelder, J. A. Generalized Linear Models (Chapman and Hall, London, 1989).


    Google Scholar
     

  • 62.

    Hastie, T. J. & Tibshirani, R. Generalized Additive Models (Chapman and Hall, London, 1990).


    Google Scholar
     

  • 63.

    Ridgeway, G. The state of boosting. J. Comput. Sci. 31, 172–181 (1999).


    Google Scholar
     

  • 64.

    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).


    Google Scholar
     

  • 65.

    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    MATH 

    Google Scholar
     

  • 66.

    Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49 (1997).


    Google Scholar
     

  • 67.

    Boyce, M. S., Vernier, P. R., Nielsen, S. E. & Schmiegelow, F. K. A. Evaluating resource selection functions. Ecol. Model. 157, 281–300 (2002).


    Google Scholar
     

  • 68.

    Le Hirzel, A. H., Lay, G., Helfer, V., Randin, C. & Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model. 199, 142–152 (2006).


    Google Scholar
     

  • 69.

    Swets, J. A. Measuring the accuracy of diagnostic systems. Science 240, 1285–1293 (1988).

    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • 70.

    Schoener, T. W. Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology 49, 704–726 (1968).


    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *