Statistical learning in domestic chicks is modulated by strain and sex


  • 1.

    Dehaene, S., Meyniel, F., Wacongne, C., Wang, L. & Pallier, C. The neural representation of sequences: From transition probabilities to algebraic patterns and linguistic trees. Neuron 88, 2–19 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Armstrong, B., Frost, R. & Christiansen, M. H. The long road of statistical learning research: Past, present and future. Philos. Trans. R. Soc. B. 372, 1711. https://doi.org/10.1098/rstb.2016.0047 (2017).

    Article 

    Google Scholar
     

  • 3.

    Santolin, C. & Saffran, J. R. Constraints on statistical learning across species. Trends Cogn. Sci. 22, 52–63 (2018).

    PubMed 

    Google Scholar
     

  • 4.

    Saffran, J. R. & Kirkham, N. Z. Infant statistical learning. Annu. Rev. Psychol. 69, 2.1-2.23 (2018).


    Google Scholar
     

  • 5.

    Fiser, J. & Aslin, R. N. Statistical learning of new visual feature combinations by infants. Proc. Natl. Acad. Sci. USA 99, 15822–15826 (2002).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Kirkham, N. Z., Slemmer, J. A. & Johnson, S. P. Visual statistical learning in infancy: Evidence for a domain general learning mechanism. Cognition 83, B35–B42 (2002).

    PubMed 

    Google Scholar
     

  • 7.

    Kirkham, N. Z., Slemmer, J. A., Richardson, D. C. & Johnson, S. P. Location, location, location: Development of spatiotemporal sequence learning in infancy. Child Dev. 78, 1559–1571 (2007).

    PubMed 

    Google Scholar
     

  • 8.

    Marcovitch, S. & Lewkowicz, D. J. Sequence learning in infancy: The independent contributions of conditional probability and pair frequency information. Dev. Sci. 12, 1020–1025 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Bulf, H., Johnson, S. P. & Valenza, E. Visual statistical learning in the newborn infant. Cognition 121, 127–132 (2011).

    PubMed 

    Google Scholar
     

  • 10.

    Wu, R., Gopnik, A., Richardson, D. C. & Kirkham, N. Z. Infants learn about objects from statistics and people. Dev. Psychol. 47, 1220 (2011).

    PubMed 

    Google Scholar
     

  • 11.

    Tummeltshammer, K. S. & Kirkham, N. Z. Learning to look: Probabilistic variation and noise guide infants’ eye movements. Dev. Sci. 16, 760–771 (2013).

    PubMed 

    Google Scholar
     

  • 12.

    Sonnweber, R., Ravignani, A. & Fitch, W. T. Non-adjacent visual dependency learning in chimpanzees. Anim. Cogn. 18, 733–745 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Milne, A. E., Wilson, B. & Christiansen, M. H. Structured sequence learning across sensory modalities in humans and nonhuman primates. Curr. Opin. Behav. Sci. 21, 39–48 (2018).


    Google Scholar
     

  • 14.

    Versace, E., Rogge, J. R., Shelton-May, N. & Ravignani, A. Positional encoding in cotton-top tamarins (Saguinus oedipus). Anim. Cogn. 22, 825–838 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Rey, A., Perruchet, P. & Fagot, J. Centre-embedded structures are a by-product of associative learning and working memory constraints: Evidence from baboons (Papio papio). Cognition 123, 180–184 (2012).

    PubMed 

    Google Scholar
     

  • 16.

    Malassis, R., Dehaene, S. & Fagot, J. Baboons (Papio papio) process a context-free but not a context-sensitive grammar. Sci. Rep. 10, 1–12 (2020).


    Google Scholar
     

  • 17.

    Grainger, J., Dufau, S., Montant, M., Ziegler, J. C. & Fagot, J. Orthographic processing in baboons (Papio papio). Science 336, 245–248 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Scarf, D. et al. Orthographic processing in pigeons (Columba livia). Proc. Natl. Acad. Sci. USA 113, 11272–11276 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Stobbe, N., Westphal-Fitch, G., Aust, U. & Fitch, W. T. Visual artificial grammar learning: Comparative research on humans, kea (Nestor notabilis) and pigeons (Columba livia). Philos. Trans. R. Soc. B. 367, 1995–2006 (2012).


    Google Scholar
     

  • 20.

    Versace, E. & Vallortigara, G. Origins of knowledge: Insights from precocial species. Front. Behav. Neurosci. 9, 338 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Versace, E., Martinho-Truswel, A., Kacelnik, A. & Vallortigara, G. Priors in animal and artificial intelligence: Where does learning begin?. Trends Cogn. Sci. 22, 963–965 (2018).

    PubMed 

    Google Scholar
     

  • 22.

    Santolin, C., Rosa-Salva, O., Regolin, L. & Vallortigara, G. Generalization of visual regularities in newly hatched chicks (Gallus gallus). Anim. Cogn. 19, 1007–1017 (2016).

    PubMed 

    Google Scholar
     

  • 23.

    Saffran, J. R., Pollak, S. D., Seibel, R. L. & Shkolnik, A. Dog is a dog is a dog: Infant rule learning is not specific to language. Cognition 105, 669–680 (2007).

    PubMed 

    Google Scholar
     

  • 24.

    Martinho, A. & Kacelnik, A. Ducklings imprint on the relational concept of “same or different”. Science 353, 286–288 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Rosa-Salva, O. et al. Spontaneous learning of visual structures in domestic chicks. Animals 8, 135 (2018).


    Google Scholar
     

  • 26.

    Versace, E., Regolin, L., & Vallortigara, G. Emergence of grammar as revealed by visual imprinting in newly-hatched chicks. In EVOLANG6, 457–458 (2006).

  • 27.

    Versace, E., Spierings, M. J., Caffini, M., Ten Cate, C. & Vallortigara, G. Spontaneous generalization of abstract multimodal patterns in young domestic chicks. Anim. Cogn. 20, 521–529 (2017).

    PubMed 

    Google Scholar
     

  • 28.

    Santolin, C., Rosa-Salva, O., Vallortigara, G. & Regolin, L. Unsupervised statistical learning in newly hatched chicks. Curr. Biol. 26, R1218–R1220 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Vallortigara, G. Visual cognition and representation in birds and primates. In Comparative Vertebrate Cognition Vol. 2 (eds Rogers, L. & Kaplan, G.) 57–94 (Kluwer Academic/Plenum Publishers, New York, NY, 2004).


    Google Scholar
     

  • 30.

    Vallortigara, G. The cognitive chicken: Visual and spatial cognition in a non-mammalian brain. In Comparative Cognition: Experimental Explorations of Animal Intelligence Vol. 1 (eds Wasserman, E. & Zentall, T.) 41–58 (Oxford University Press, Oxford, 2006).


    Google Scholar
     

  • 31.

    Vallortigara, G. Core knowledge of object, number, and geometry: A comparative and neural approach. Cogn. Neuropsychol. 29, 213–236 (2012).

    PubMed 

    Google Scholar
     

  • 32.

    Bateson, P. The characteristics and context of imprinting. Biol. Rev. 41, 177–217 (1966).

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Bateson, P. & Jaeckel, J. B. Chicks’ preferences for familiar and novel conspicuous objects after different periods of exposure. Anim. Behav. 24, 386–390 (1976).


    Google Scholar
     

  • 34.

    Bolhuis, J. Mechanisms of avian imprinting: A review. Biol. Rev. 66, 303–345 (1991).

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    McCabe, B. Imprinting. WIREs Cogn. Sci. 4, 375–390 (2013).


    Google Scholar
     

  • 36.

    Miura, M., Nishi, D. & Matsushima, T. Combined predisposed preferences for colour and biological motion make robust development of social attachment through imprinting. Anim. Cogn. 23, 169–188 (2019).

    PubMed 

    Google Scholar
     

  • 37.

    Bateson, P. Is imprinting such a special case?. Philos. Trans. R. Soc. B. 329, 125–131 (1990).

    ADS 

    Google Scholar
     

  • 38.

    Bateson, P. Preferences for familiarity and novelty: A model for the simultaneous development of both. J. Theor. Biol. 41, 249–259 (1973).

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Vallortigara, G. Affiliation and aggression as related to gender in domestic chicks (Gallus gallus). J. Comp. Psychol. 106, 53–57 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Vallortigara, G., Cailotto, M. & Zanforlin, M. Sex differences in social reinstatement motivation of the domestic chick (Gallus gallus) revealed by runway tests with social and nonsocial reinforcement. J. Comp. Psychol. 104, 361–367 (1990).

    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Cailotto, M., Vallortigara, G. & Zanforlin, M. Sex differences in the response to social stimuli in young chicks. Ethol. Ecol. Evol. 1, 323–327 (1989).


    Google Scholar
     

  • 42.

    Cailotto, M., Vallortigara, G. & Zanforlin, M. Behavioural differences between male and female domestic chicks (Gallus gallus). Atti e Memorie dell’Accademia Patavina di Scienze, Lettere ed Arti CI 77–92 (1989).

  • 43.

    Regolin, L., Tommasi, L. & Vallortigara, G. Visual perception of biological motion in newly hatched chicks as revealed by an imprinting procedure. Anim. Cogn. 3, 53–60 (2000).


    Google Scholar
     

  • 44.

    Vallortigara, G. & Andrew, R. J. Lateralization of response by chicks to change in a model partner. Anim. Behav. 41, 187–194 (1991).


    Google Scholar
     

  • 45.

    Versace, E., Fracasso, I., Baldan, G., Dalle Zotte, A. & Vallortigara, G. Newborn chicks show inherited variability in early social predispositions for hen-like stimuli. Sci. Rep. 7, 40296 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Miura, M. & Matsushima, T. Preference for biological motion in domestic chicks: Sex-dependent effect of early visual experience. Anim. Cogn. 15, 871–879 (2012).

    PubMed 

    Google Scholar
     

  • 47.

    Jones, R. Sex and strain differences in the open field responses of domestic chicks. Appl. Anim. Ethol. 3, 255–261 (1977).


    Google Scholar
     

  • 48.

    Jones, R. Responses of domestic chicks to novel food as a function of sex, strain and previous experience. Behav. Proc. 16, 261–271 (1986).


    Google Scholar
     

  • 49.

    Mutibvu, T., Chimonyo, M. & Halimani, T. Effects of strain and sex on the behaviour of free-range slow-growing chickens raised in a hot environment. J. Appl. Anim. Res. 46, 224–231 (2017).


    Google Scholar
     

  • 50.

    Aslin, R., Saffran, J. & Newport, E. Computation of conditional probability statistics by 8-month-old infants. Psychol. Sci. 9, 321–324 (1998).


    Google Scholar
     

  • 51.

    Workman, L. & Andrew, R. Simultaneous changes in behaviour and in lateralization during the development of male and female domestic chicks. Anim. Behav. 38, 596–605 (1989).


    Google Scholar
     

  • 52.

    Vallortigara, G. & Zanforlin, M. Open-field behavior of young chicks (Gallus gallus): Antipredatory responses, social reinstatement motivation, and gender effects. Anim. Learn. Behav. 16, 359–362 (1988).


    Google Scholar
     

  • 53.

    Rosa-Salva, O., Regolin, L. & Vallortigara, G. Inversion of contrast polarity abolishes spontaneous preferences for face-like stimuli in newborn chicks. Behav. Brain Res. 228, 133–143 (2012).

    PubMed 

    Google Scholar
     

  • 54.

    Wood, S. M., Johnson, S. P. & Wood, J. N. Automated study challenges the existence of a foundational statistical-learning ability in newborn chicks. Psychol. Sci. 30, 1592–1602 (2019).

    PubMed 

    Google Scholar
     

  • 55.

    Bateson, P. How do sensitive periods arise and what are they for?. Anim. Behav. 27, 470–486 (1979).


    Google Scholar
     

  • 56.

    Bateson, P. Brief exposure to a novel stimulus during imprinting in chicks and its influence on subsequent preferences. Anim. Learn. Behav. 7, 259–262 (1979).


    Google Scholar
     

  • 57.

    Cherfas, J. & Scott, A. Impermanent reversal of filial imprinting. Anim. Behav. 29, 301 (1981).


    Google Scholar
     

  • 58.

    Salzen, E. & Meyer, C. Reversibility of imprinting. J. Comp. Physiol. Psychol. 66, 269–275 (1968).

    CAS 
    PubMed 

    Google Scholar
     

  • 59.

    Pitz, G. F. & Ross, R. B. Imprinting as a function of arousal. J. Comp. Physiol. Psychol. 54, 602 (1961).

    CAS 
    PubMed 

    Google Scholar
     

  • 60.

    Lemaire, B. S. No evidence of spontaneous preference for slowly moving objects in visually naïve chicks. Sci. Rep. 10, 6277 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 61.

    McBride, G., Parer, I. & Foenander, F. The social organization and behaviour of the feral domestic fowl. Anim. Behav. Monogr. 2, 125–181 (1969).


    Google Scholar
     

  • 62.

    Josserand, M. & Lemaire, B. S. A step by step guide to using visual field analysis. Protocols https://doi.org/10.17504/protocols.io.bicvkaw6 (2020).

    Article 

    Google Scholar
     

  • 63.

    Mathis, A. et al. DeepLabCut: Markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21, 1281 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Nath, T. et al. Using DeepLabCut for 3D markerless pose estimation across species and behaviors. Nat. Protoc. 14, 2152–2176 (2019).

    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *